

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КАОЛИН ОБОГАЩЕННЫЙ

МЕТОД ОПРЕДЕЛЕНИЯ ФИЛЬТРАЦИОННОЙ СПОСОБНОСТИ

ΓΟCT 19609.24-88

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

каолин обогащенный

Метод определения фильтрационной способности

ΓΟCT 19609.24—88

Concentrated kaolin, Method for determination of literation ability

OKCTV 5729

Срок действия

с 01.01.89

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на обогащенный каолин и устанавливает метод измерения показателя фильтрационной способности.

Метод основан на определении кинетики фильтрации каолиновых суспензий. Кинетика фильтрации характеризуется изменением объема выделяющегося фильтрата в зависимости от продолжительности процесса фильтрования.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу определения фильтрационной способности — по ГОСТ 19609.0—79.

Допускается проводить анализ из одной навески.

2. АППАРАТУРА И МАТЕРИАЛЫ

Прибор для определения водоотдачи глинистых растворов ВМ-6.

Весы для статического взвешивания пиферблатные с наибольшим пределом взвешивания 10 кг, 2-го класса точности по ГОСТ 23676—79.

Весы лабораторные с наибольшим пределом измерения 1 кг, 3-го класса точности по ГОСТ 24104—80.

Ступка фарфоровая с пестиком по ГОСТ 9147-80.

Барабан фарфоровый вместимостью 1000—2000 см² по ГОСТ 9147—80.

Издание официальное

Перепечатка воспрещена

С Издательство стандартов, 1988

Набор ареометров, пригодных для определения плотности от 1,120 до 1,840 г/см³, с ценой деления 0,001 г/см³ по ГОСТ 18481—81.

Пикнометр вместимостью не менее 50 см³ стеклянный по ГОСТ 22524—77 или металлический, аттестованный по ГОСТ 8.326—78.

Термометр для измерения температуры до 100°C с ценой деления 1°C по ГОСТ 215—73.

Секундомер с ценой деления до 0,2 с по ГОСТ 5072-79.

Сито с сеткой № 02 по ГОСТ 6613-86.

Сосуд стеклянный или керамический вместимостью не менее 1000 см³:

Масло индустриальное (машинное или веретенное) по ГОСТ 20799—75.

з. подготовка к испытанию

- 3.1. Пробу каолина измельчают в фарфоровой ступке до размера кусков не более 10 мм, взвешнвают на инферблатных весах и загружают в фарфоровый барабан. Туда же заливают дистиллированную воду. Объем воды выбирают таким, чтобы в готовой суспензии разность плотностей, измеренных с помощью ареометра и пикнометра, составляла 0,1—0,5 г/см². Мелющие тела должны иметь размер 20—40 мм. Соотношение между мелющими телами и каолином по массе должно составлять 2:1.
- 3.2. Роспуск каолина в шаровой мельнице производят в течение 1,0—1,5 ч. Конец роспуска устанавливают по достижению постоянства ареометрической плотности: разность показателей последовательно отобранных при роспуске с интервалом 15 мни проб не должна превышать 0,010 г/см³. Суспензию распущенного каолина через сито с сеткой № 02 сливают в сосуд вместимостью не менее 1000 см³, измеряют температуру с точностью до 1°С и с помощью пикнометра определяют плотность суспензии, округляя расчетное значение до 0,001 г/см³.
- 3.3. Фильтр «красная лента», диаметр которого равен наружному диаметру стакана, смачивают водой и помещают в основание прибора ВМ-6. Сверху кладут резиновую прокладку. Завинчивают стакан и вставляют в основание пробку.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1. Суспензию тщательно перемешивают и заливают в стакаи, заполняя его на 3—4 мм ниже горлышка. Навертывают цилиндр на стакан и заполняют маслом, не доливая около 1 см до краи цилиндра. Игла, закрывающая отверстие для слива масла, должна быть плотно завернута. Вставляют в цилиндр плунжер, осторожно отворачивают иглу и спускают избыток масла. Вращая

плунжер за накатку на грузе, подводят нулевое деление на шкале к отсчетной риске: на верхнем крае цилиндра и быстро завертывают иглу.

- 4.2. Вынимают пробку из основания прибора и одновременно включают секундомер. В ходе испытания вращают плунжер за накатку на грузе, не допуская заедания. Измерение объема выделившегося фильтрата производят через 1, 4, 9, 16, 25, 36, 49 мин. Число замеров не должно быть менее 3, а объем выделившегося фильтрата не должен быть менее половины максимально возможной величины, т. е. составлять не менее 20 см³ по шкале прибора. Отсчет производят с оценкой десятых долей деления шкалы прибора.
- 4.3. После окончания фильтрации открывают иглу, сливают масло из цилиндра и опускают плунжер с грузом. Затем при открытой игле вынимают плунжер, закрывают иглу, отворачивают цилиндр со стакана, сливают остатки шликера и разбирают стакан.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

- 5.1. Измеренные показания прибора ВМ-6 следует разделить на 2.
- 5.2. Фильтрационную способность (Φ) каолина в см 3 /мин $^{0.5}$ вычисляют по формуле

$$\Phi = 1,25 a_1 \frac{100 - W}{W},$$

где 1,25 -- постоянный коэффициент;

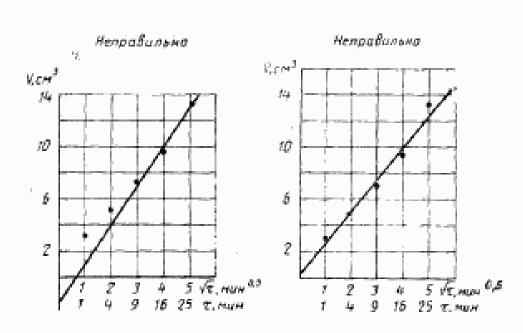
 a_1 — фильтруемость суспензии при вязкости воды, равной I мПа · c, см³/мин^{0,5}:

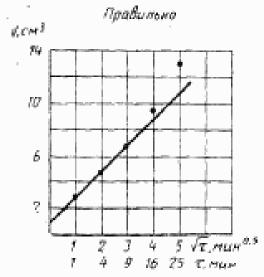
W — влажность суспензии, %.

Погрешность определения показателя фильтрационной способности при доверительной вероятности $P\!=\!0.95$ составляет $\pm\,0.10~{\rm cm}^3/{\rm min}^{0.5}$.

Влажность суспензии (W) вычисляют по формуле

$$W = 100 \frac{\gamma - D}{D(\gamma - 1)}$$

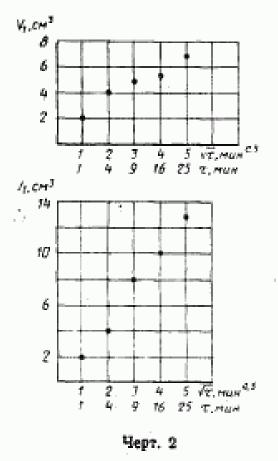

- где γ истинная плотность сухого вещества, г/см³, равная для обогащенного каолина 2,650;
 - D пикнометрическая плотность суспензии, г/см 3 .


5.4. Фильтруемость суспензии при вязкости воды, равной $I M \Pi a \cdot c$, (a_1) вычисляют по формуле

$$a_1=a \sqrt{\eta/1}$$
,

- где η вязкость воды при температуре суспензии согласно приложению 1, мПа · с;
 - фильтруемость суспензии при температуре проведения эксперимента, см³/мин^{0,8}.
- 5.5. Фильтруемость суспензии при температуре проведения эксперимента (а) находят путем графического решения уравнения

$$V=V_0+aV^{\overline{\tau}}$$
,


Mepr. J.

где V — объем выделившегося фильтрата, см³;

 V_0 — погрешность нуля, см 3 ;

т -- продолжительность фильтрации, мин.

Величину α определяют как тангенс угла наклона прямой линии, построенной в координатах $V - V - \tau$. Прямую проводят по первым трем точкам. Примеры правильного и неправильного построения прямой линии приведены на черт. 1. Погрешность нуля V_0 может быть положительным, отрицательным числом или равняться нулю.

5.6. Резкое отклонение от прямолинейной зависимости (черт. 2) указывает на недоброкачественность полученных результатов. Такой анализ должен быть повторен.

Протокол испытания — согласно приложению 2.

ПРИЛОЖЕНИЕ 1 Справочкое

ЗАВИСИМОСТЬ ВЯЗКОСТИ ВОДЫ ОТ ТЕМПЕРАТУРЫ

Температу- ра, °C	ከ7	18	19	20	21	22	23	24	25
Вязкость, η, мПа · с	1,1025	1,0740	1,0480	1,0210	0,9970	0,9725	0,9500	0,9280	0.9075
$V\overline{\eta/1}$	1,050	1,036	1.024	1,010	0,998	0,986	0,975	0,963	0,953

ПРИЛОЖЕНИЕ 2 Рекомендуемое

протокол испытания

Протокол вспытания должен включать следующие данные: лату испытания; наименование испытываемого материала; место отбора пробы; температуру суспензии. o G; вязкость воды при температуре суспензии η , мПа · c; плотность суспензии, найденную с помощью пикнометра, D, r/cm^3 ; влажность суспензии W, %; астимную плотвость сухого вещества γ , r/cm^3 (если она отличается от 2,650); погрешность нуля V_0 , cm^3 ; фильтруемость суспензии при температуре эксперимента a, $cm^3/мин^{0.5}$; фильтруемость суспензии при вязкости воды і мПа · с a_1 , $cm^3/мин^{0.5}$; фильтрационную способность материала Φ , $cm^3/мин^{0.5}$; фамилию проводившего испытания.

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности СССР

исполнители

- Л. П. Карпиловский, канд. техн. наук
- УТВЕРЖДЕН И ВВЕДЕН В ДЕИСТВИЕ Постановлением Государственного комитета СССР по стандартам от 14.03.88 № 540
- Срок первой проверки 1993 г. Периодичность проверки — 5 лет.
- 4. ВВЕДЕН ВПЕРВЫЕ
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который двиз ссылка	liowep pargena
FOCT 8.326—78 FOCT 215—73 FOCT 5072—79 FOCT 6613—86 FOCT 9147—80 FOCT 18481—81 FOCT 19609.0—79 FOCT 20799—75 FOCT 22524—77 FOCT 23676—79 FOCT 24104—80	201010421

Редактор Н. Е. Шестикова Технический редактор И. Н. Дубина Корректор В. И. Варенцова

Сдано в неб. 05.04.88 Подл. в веч. 24.05.88 0.5 усл. в. л. 0,5 усл. кр.-отт. 0,28 уч.-изд. п. Тириж 6.000

Ордена «Знак Почета» Издательство стандартов, 123840, Москва ГСП, Новопресненский пер., 3 Тар. «Московский печатияк». Москва, Лялию пер., 6, 3 кк. 2241

