

10560-88 11741,1,2+

ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

ПРЕССЫ ЛИСТОГИБОЧНЫЕ ГИДРАВЛИЧЕСКИЕ

ПАРАМЕТРЫ И РАЗМЕРЫ, НОРМЫ ТОЧНОСТИ

ΓΟCT 10560-88 (CT CЭВ 1833-79, CT СЭВ 1835-79)

Издание официальное

E

ГОСУДАРСТВЕННЫЯ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

ГОСУДАРСТВЕННЫ И СТАНДАРТ. СОЮЗА ССР

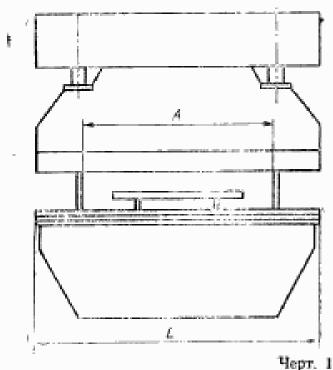
ПРЕССЫ ЛИСТОГИБОЧНЫЕ ГИДРАВЛИЧЕСКИЕ

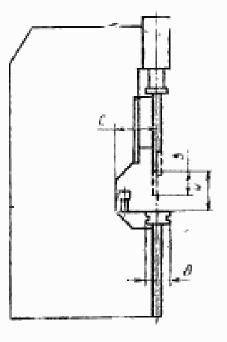
Параметры и размеры, Нормы точности ΓΟCT 10560—88

Hydraulic sheet-bending presses, Parameters and dimensions, Norms of accuracy

(CT C3B 1833-79, CT C3B 1835-79)

OKII 38 2714


Срок действия


с 01.01.89 до 01.01.94

Настоящий стандарт распространяется на гидравлические листогибочные прессы с индивидуальным приводом, в том числе на гидравлические прессы с программным управлением, предназначеные для изготовления из листового и полосового проката изделий методом гибки для нужд народного хозяйства и экспорта.

1. ПАРАМЕТРЫ И РАЗМЕРЫ

Параметры и размеры прессов в соответствии с черт. 1 и табл. 1.

Примечание. Чертеж не определяет конструкцию пресса.

Издание официальное

Перепечатка восирещена

E

С Издательство стандартов, 1988.

Б Т ДОССИ 0500-881 Прессы листогибочные гидравлические. Параметры и размеры. Нормы точности hydraulic sheet bendding presses. Parameters and dimensions. Norms of accuracy

Навменопание параметра					
Номинальное усилие пресса, кН (тс)	250 (25)	400 (40)	630 (63)	1000 (100)	
Длина стола и ползуна L, мм:					
исполнение 1	1600	2000.	2	500	
исполнение 2	2500		3150		
исполнение 3				4000	
исполнение 4				1000	
Расстояние между стойками в свету 4. мм:					
исподнение !	1000	1600	2	000	
ислолиение 2	2000		2500		
исполнение 3				2500	
исполнение 4				3150	
Ширина стола В, мм	11	00	200		
Наибольшее расстояние между сто- юм и ползуном Н, мм, не менее		320		400	
Расстояние от оси ползуна до станины (вылет) С. мм		200		250	
Наибольший ход ползуна S, мм, не исисе		125		160	
Манбольшая регулировка хода пол- уна, мы, не менее		1	00		
Скорость; ползуна ми/с, не менее:		,	00	!	
при холостом ходе			00	1	
при рабочем холе	ļ	9			
при возвратном ходе-	8()	70	65	
Дискретность заданий перемещений о осям координат на модифика- иях с программным управлением, ми, е более			,1	. 45	

10-4	MOV.	Political Control	9 KL
-814	ъ.	100	- 694

1600 (160)	2000 (200)	2500 (250)	4000 (400)_	6300 (630)	10000) (1000)	16000 (1600
	3150		50	00	6300	8000
	4000		63	000	8000	10000
			6300	8000	10000	
	5000	ľ	_		_	
					-	
	2500.		40	100	5000	6300
	3150 -		4000 5000		6300	8000
9100			5000 6300		.8000	
	4000					
250		320	400		400 50	
	500_		6	30	800	900
	320		4	00	450	600
	200		3	20	400	450
100	-	125			160	
						_
		100			7	0
		60				

Наименование параметра				
Номинальное усиляе пресса, кН (те)	250 (25)	400 (40)	630 (63)	1000
Количество управляемых осей коор- динат, шт., не менее			3	
Количество одновременно управляе- мых осей координат, шт., не ме- нее			2	
Удельный расход энергии K _s , (кВт·с)/(кН·м), не более*		12-10-1		
Удельная масса K _м , кг/(кН-м), ве более *		25		22

^{*} Удельный расход экергии K_2 и удельную массу $K_{\rm M}$ определяют по форму

$$K_3 = \frac{N}{P_{\text{MOM}} \cdot v}$$
, $K_{\text{M}} = \frac{M}{P_{\text{NOM}} \cdot (S \cdot H \cdot B \cdot L)^{0.25}}$

где N — установленияя мощность электродвигателя главного привода. «Вт; $P_{\text{пом}}$ — номинальное усилие пресса, кН; v — скорость ползуна при рабочем ходе, м/с; M — масса пресса (без средств механизации и автоматизации ниструмен H — наибольшее расстояние между столом и ползуном, м;

S — наибольший ход ползуна, м;
В — ширина стола, м;

L — длина стола, м.

 $9 \cdot 10^{-1}$

11,5

1600 (160)	2000 (200)	2500 (250)	4000 (400)	6300 (630)	10000	16000 (1600)
			3			
			9			

лам:

та и узлов, поставляемых за отдельную плату), кг;

 $10 \cdot 10^{-1}$

14

1.2. Конетрукция прессов должна иметь устройства:

регулирования усилия пресса,

регулирования ограничения нижнего конечного положения ползуна,

выдержки изделия под нагрузкой в конце деформирования.

Прессы должны быть оснащены:

универсальным инструментом для свободной гибки листового и полосового проката,

средством механизации выгрузки (или загрузки) детали (или

заготовки).

устройством программного управления на модификациях прессов, предназначенных для многопереходной гибки.

Примечание. Тип и состав средств механизации, устройств программного управления определяют по требованию заказчика.

1.3. Конструкция прессов должна обеспечивать возможность встраивания их в автоматические комплексы, оснащенные промышленными роботами.

2. НОРМЫ ТОЧНОСТИ

- Общие требования при проведении проверок по ГОСТ 15961 - 80.
- 2.2. При испытаниях под нагрузкой прессы должны обеспечивать требования по точности изготовления гнутых профилей в соответствии с действующими стандартами на гнутые профили.
- 2.3. Прессы должны проверяться при единых значениях зазоров в направляющих, установленных при испытаниях на холостом

ходу под нагрузкой.

- 2.4. Если конструктивные размеры не позволяют произвести замер на длине, к которой отнесен допуск, то последний должен быть пересчитан на наибольшую возможную длину измерения по ГОСТ 24643—81. Полученный при пересчете допуск менее 0.01 мм принимают равным 0.01 мм.
 - 2.5. Средства измерения, используемые для проведения про-

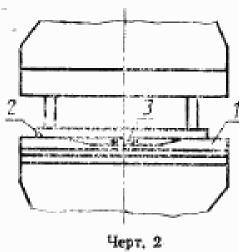
верок указаны в рекомендуемом приложении.

- 2.6. Допускается применение других методов проведения проверок и средств измерения, при условии, что они обеспечивают необходимую точность.
- 2.7. Нормы точности прессов должны соответствовать значениям, указанным в пп. 2.6.1—2.6.5.

Базовой поверхностью для проверок по пп. 2.6.4-2.6.5 являет-

ся опорная поверхность стола.

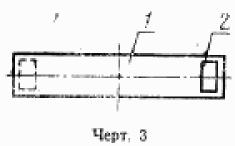
Шаг измерения для проверок по пп. 2.6.1—2.6.3 не должен превышать одной пятой части длины проверяемой поверхности и быть не более 500 мм.


2.7.1. Плоскостность поверхности стола

Допуск плоскостности поверхности стола 0,06 мм на длине

1000 мм (выпуклость не допускается).

Отклонение от плоскостности поверхности стола проверяют контролем прямолинейности и извернутости и определяют как сумму двух значений: отклонения от прямолинейности на длине 1000 мм (по продольному сечению) и одной четвертой части извернутости.


Контроль прямолинейности в соответствии с черт. 2.

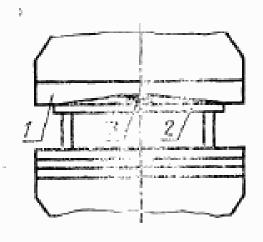
На контролируемую поверхность стола / по продольному среднему сечению прикладывают рабочей поверхностью поверочную линейку 2. Щупом 3 проверяют просвет между рабочей поверхностью линейки и поверхностью стола во всех контролируемых точках.

Отклонение от прямолинейности равно наибольшему зна-

чению толщины щупа.

Контроль извернутости в соответствии с черт. 3.

Уровень 2 устанавливают поочередно на оба конца контролируемой поверхности перпендикулярно длинному ребру стола и производят отсчеты по его шкале. Велячина извернутости равиз алгебраической разности значений полученных отсчетов.


2.7.2. Плоскостность нижней поверхности ползуна в месте

прилегания инструмента

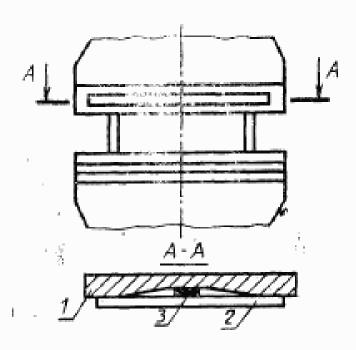
Допуск плоскостности 0,06 мм на длине 1000 мм (выпуклость не допускается).

Контроль плоскостности в соответствии с черт. 4.

Черт. 4

На контролируемую поверхность ползуна *I* прикладывают рабочей поверхностью поверочную линейку 2. Щупом *3* проверяют просвет между рабочей поверхностью линейки и нижней поверхностью ползуна в месте прилегания инструмента.

Отклонение от плоскостности равно наибольшему значению

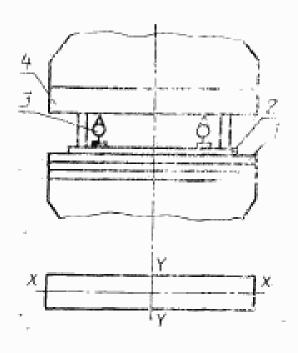

толшины шупа.

2.7.3. Плоскостность вертикальной поверхности ползуна в месте прилегания инструмента

Допуск плоскостности 0,06 мм на длине 1000 мм (выпуклость

не допускается).

Контроль плоскостности в соответствии с черт. 5.



На контролируемую вертикальную поверхность ползуна *I* прикладывают рабочей поверхностью поверочную линейку 2. Щуном 3 проверяют просвет между рабочей поверхностью линейки и вертикальной поверхностью ползуна в месте прилегания инструмента.

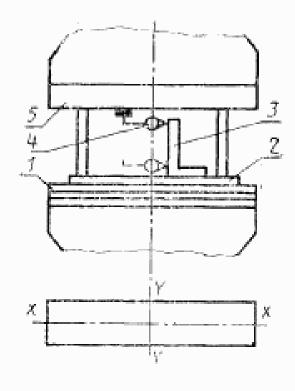
Отклонение от плоскостности равно наибольшему значению толшины myna.

2.7.4. Параллельность нижней поверхности ползуна в месте прилегания инструмента поверхности стола

Контроль параллельности в соответствии с черт. 6.

Hepr. 6

На опорную поверхность стола *I* прикладывают рабочей поверхностью поверочную линейку 2, на которую устанавливают на специальной стойке индикатор 3 так, чтобы его измерительный наконечник касался противолежащей нижней поверхности ползуна 4. Измерения производят в двух взаимно перпендикулярных направлениях *X—X* и *Y—Y* в нижнем положении ползуна при крайних положениях его регулировки.


Отклонение от параллельности равно разности показаний индикатора в крайних точках проверки.

Допуск парадлельности в направлении X—X в соответствии с табл. 2, в направлении Y—Y 0.06 мм на длине 100 мм.

	Допуск, им,	не длине 1000 мм пр между стойками	эн разостояния
Усилие прессе, иН	До 2500	Св. 2600 до 4000	Св. 4000
До 1000 Св. 1000 до 2500 > 2500 > 6300 > 6300	0,08 0,10 0,12 0,16	0.06 0.08 0.10 0.12	0,06 0,06 0,08 0,10

2.7.5. Перпендикулярность хода ползуна к поверхности стола Контроль перпендикулярности в соответствий с черт. 7.

Черт. 7

На опорную поверхность стола 1 прикладывают рабочей поверхностью поверочную линейку 2, на которую устанавливают угольник 3. Индикатор 4 крепят на специальной стойке к ползуну 5 так, чтобы его измерительный наконечник касался измерительной поверхности угольника. Измерения производят в двух взаимно перпендикулярных направлениях X-X и Y-Y в крайних инжнем и верхнем положениях ползуна.

Отклонение от перпендикулярности равно разности показаний индикатора в крайних точках проверки.

Допуск перпендикулярности, мм, на длине 100 мм при усилии пресса, кН:

до 1000			4					0.08
св. 1000 до 2500	-	-	- 1	-				-0.10
св. 2500			4					-0,12

ПРИЛОЖЕНИЕ

Рекомендиемое

Средства измерения, используемые для проведения проверок морм ности листогибочных гидравлических прессов

1) Ливейки поверочные типа ШД и ШМ влассов точности 1 иля 2

FOCT 8026-75;

Уровин типа 1 по ГОСТ 11196—74;

Угольники поверочные 90° типа УШ класса точности 0 по ГОСТ 3749—77;

4) Щупы класса точности 1 по ГОСТ 882-75;

 Индикаторы часового типа с ценой деления 0,01 мм по ГОСТ 577—68; 6) Индикаторы многооборотные с ценой деления 0,001 им по ГОСТ **96**96 — 82;

Штативы ШМ-111—8 по ГОСТ 10197—70.

ЗНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством станкостроительной и инструментальной промышленности СССР

исполнители

- А. С. Яковлев (руководитель темы), С. А. Седлов
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.03.88 36 800
- Срок первой проверки 1992 г., периодичность проверки 5 лет.
- Стандарт полностью соответствует СТ СЭВ 1833—79, СТ СЭВ 1835—79.
- ВЗАМЕН ГОСТ 10560—83, ГОСТ 11834—79 в части гидравлических прессов.
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на ноторый дани обыдка	Номер Оункта, приложения
FOCT 55768 FOCT 88275 FOCT 374977 FOCT 802675 FOCT 969682 FOCT 1019770 FOCT 1119674	Приложение
FOCT 15961—80 FOCT 24643—81	2.1 2.3

Изменение № 1 ГОСТ 10560—88 Прессы листогибочные гидравлические. Параметры и размеры. Нормы точности

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 27.04.89 № 1145

Дата введения 01.11.89

Пункт 1.1. Таблица 1. Пираметр «Скорость ползуна при рабочем ходе» для поминального усилия 1000 кН дополнить значением: 8; параметр «Скорость ползуна при возвратиом ходе». Заменить значения: 80, 70, 65 на 55; 60 на 50; 50 на 30.

наименования нараметров «Количество увравляемых осей координат» и (Продолжение см. с. 144)

(Продолжение изменения к ГОСТ 10560-88)

«Количество одновременно управляемых осей координат» дополнить знаком еноски:**;

параметр «Удельный расход эвергий» для номинального усилия 1000 кН дополнить значением: 10-10-1;

табляцу дололнить сноской: «** На модафикациях с программным управлением».

Пункт 2.3 изложить в новой редакции: «2.3. Прессы должны проверять при единых значениях зазоров в направляющих, установленных при испытациях на колостом ходу и под нагрузкой».

Пункт 2.7. Заменять ссылку: пл. 2.6.1—2.6.5 на пл. 2.7.1—2.7.5; пл. 2.6.4—

-2.6.5 на пп. 2.7.4, 2.7.5; пп. 2.6.1-2.6.3 на пп. 2.7.1-2.7.3.

(ИУС № 7 1989 г.)

Группа Г83

Изменение № 2 ГОСТ 10560—88 Прессы листогибочные гидравлические, Параметры и размеры. Нормы точности

Утверждено и впедено в действие Постановлением Государственного комитета. СССР по управлению качеством продукции и стандартам от 17.04.90 № 914

Дата введения 01.01.91

На обложке и первой странине под обозначением стандарта заменить обозначение: (СТ СЭВ 1833—79) на (СТ СЭВ 1833—89).

(HVC № 7 1990 г.)

Редактор А. Л. Владимиров Технический редактор Л. А. Никитина Корректор Н. Л. Шнайдер

Сдано в нъб. 11.04.88 Поди, в печ. 15.06.88 Г.В усл. п. л. 1.0 усл. кр.-отт. 0.55 уч.-кад. в. Тираж 14.000

Ордена «Знак Почета» Издательство стандартов. (23840, Москва, ТСП. Нопопресненский нер., 3 Тип. «Московский печатичк». Москва, Лялий пер., 6: Зак. 2334

		Единица	
Sepresia	Намитипацию	Ofoss	ичент
sens wile	nassenosame	менцународное	русское
основны	Е ЕДИНИ!	тя си	_
Длина	метр	m	M
Macca	килограмм	kg	KET"
Время	сехунда	S	c
Сила электрического тока	ампер	A	A
Термодинамическая температура	кельзим	K	K
Количество вещество	Mone	mol	моль
Сила света	кондело	cd	κд
ДОПОЛНИТЕ	Льные ед	Гинипе с	И
Плоский угол	раднан	rad	рад
Телесный угол	стеродиан	SE	ср

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

		Единица		Бырежение через
Волична.	Нанилиона-	Оботи	prostinit	оспомение и до-
венична	HARMENDOS	междума- роднов	русское	полинельныя одиницы СН
Частота	герц	Hz	Γų	c-1
Сила	ньютон	N	H	M·KT-C=2
Довление	паскаль	Pa	Πo	M-1 - KT-C-E
Энергия	джоуль	J	Дж	M2-KF-C™
Мощность	2011	W	B7	M ² ·Kr·c ^{−4}
Количество влектричества	кулон	C	Kn	s·A
Электрическое изпражение	вольт	V	8	м2-кг-с=2-А=
Электрической емкость	фарад	F	Ф	M-1KF-1 C1 A
Электрическое сопротивление	ОМ	2	Ow.	м² кг.с~ А~
Электрическая проводимость	сименс	S	C _m	M-4Kr-1.c3.A3
Поток магнитной индукции	вебер	Wb	B6	ME - Kr. C-2-A-
Магнитная индукция	тесла	Т	Ta	нг-с-2-А-1
Индуктивность	генри	Н	Гн	We KL C-3 - W
Световой поток	люмен	lm	лм	ка ср
Освещенность	имокс	l k	лк	м⊸≐∗кд⊹ср
Активность радионуклида	беккерель	Bq	Бж	c~t
Поглощенная доза ионизирую-	грэй	Gy	Гр	M2 c-2
шдыгө излучения			_	
Эквивалентная доза излучения	Э неся т	Sv	3.	W2 . C-2