УСТРОЙСТВА ПРЕОБРАЗОВАНИЯ СИГНАЛОВ АППАРАТУРЫ ПЕРЕДАЧИ ДАННЫХ ДЛЯ РАБОТЫ ПО ОСНОВНОМУ ЦИФРОВОМУ КАНАЛУ СО СКОРОСТЬЮ 64 кбит/с

ТИПЫ И ОСНОВНЫЕ ПАРАМЕТРЫ

Издание официальное

E3 8-2004

УДК 621.391.68.3:006.354 Группа П85

межгосударственный стандарт

УСТРОЙСТВА ПРЕОБРАЗОВАНИЯ СИГНАЛОВ АППАРАТУРЫ ПЕРЕДАЧИ ДАННЫХ ДЛЯ РАБОТЫ ПО ОСНОВНОМУ ЦИФРОВОМУ КАНАЛУ СО СКОРОСТЬЮ 64 кбит/с

ΓΟCT 28675-90

Типы и основные параметры

Data transmission equipment signal conversion modules for a 64 kbit/s basic digital channel. Types and basic parameters

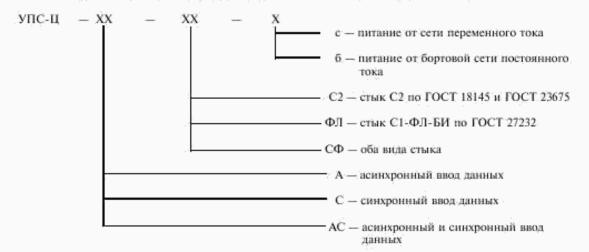
MKC 33.040.20 OKCTY 6656

Дата введения 01.07.91

Настоящий стандарт распространяется на устройства преобразования сигналов цифровые (УПС-Ц) аппаратуры передачи данных (АПД), предназначенные для передачи данных по основному цифровому каналу (ОЦК) со скоростью передачи 64 кбит/с, и устанавливает их типы и основные параметры.

Стандарт распространяется на УПС-Ц, конструктивно выполненные в виде законченных автономных изделий или в виде составных частей оконечного или промежуточного оборудования.

1. ТИПЫ


1.1. УПС-Ц подразделяют на типы в зависимости от вида:

синхронизации;

стыка с оконечным оборудованием данных (ООД);

питания.

Обозначение типов УПС-Ц должно соответствовать приведенному на схеме:

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1990 © Стандартинформ, 2005 УПС-Ц, конструктивно выполненные в виде автономных устройств, должны иметь собственный источник питания и обеспечивать возможность монтажа на транспортные средства.

Питание УПС-Ц, конструктивно выполненного в виде встраиваемого модуля, должно быть осуществлено от ООД или промежуточного оборудования, в которое УПС-Ц встроено.

2. ОСНОВНЫЕ ПАРАМЕТРЫ

- 2.1. УПС-Ц должны обеспечивать прямое и обратное преобразование сигналов, поступающих от оконечного или промежуточного оборудования данных, в пригодный для синхронной передачи по ОЦК с использованием четырехпроводной цепи вид при одновременном двухстороннем режиме работы.
- УПС-Ц с синхронным вводом данных (УПС-Ц-С) должны обеспечивать ввод данных со следующими номинальными скоростями: 16: 32: 48 и 64 кбит/с.
- УПС-Ц с асинхронным вводом данных (УПС-Ц-А) должны обеспечивать ввод данных со следующими номинальными скоростями: 1,2; 2,4; 4,8; 9,6; 16; 32; 48 кбит/с.

Примечания:

- По согласованию с заказчиком встроенные УПС-Ц могут работать с ограниченным количеством скоростей ввода данных.
- Для УПС-Ц-А допускают скорости передачи 50; 100; 200; 300; 600 бит/с. При этом сигналы, поступающие от ООД, должны быть предварительно преобразованы методом синхронного наложения в сигналы со скоростью 1200 бит/с.
- Для полного использования пропускной способности ОЦК в УПС-Ц должно применяться временное уплотнение потоков данных (приложение 1).
- В УПС-Ц-А асинхронный ввод данных должен осуществляться методом двухстороннего согласования скоростей.
 - УПС-Ц должны сопрягаться с ОЦК по сетевому стыку ОЦК (приложение 2).
- 2.7. УПС-Ц должны сопрягаться с ООД и другим оборудованием по стыкам С2 или С1-ФЛ-БИ. Номенклатура цепей стыка с ООД и их электрические параметры должны соответствовать требованиям ГОСТ 18145 и ГОСТ 23675 для стыка С2 (приложение 3) или ГОСТ 27232 для стыка по ФЛ.
- Значения основных электрических параметров УПС-Ц должны соответствовать приведенным в табл. 1.

Таблица 1

Наименование параметра	Значение
1. Номинальное напряжение сигнала в размахе на выходе УПС-Ц в точках подклю-	
чения к стыковой цепи ОЦК на нагрузочном сопротивлении (150 ± 10 %) Ом - В	3
2. Выброс от номинальной амплитуды, не более, %	.5
3. Номинальная форма импульсов сигнала	прямоугольная
 Диапазон амплитудных значений сигнала на входе УПС-Ц в точках подключения к ОЦК, В 	от 0,02 до 1
5. Входное и выходное сопротивления УПС-Ц, Ом	150 ± 20 %
 Затухание асимметрии входных и выходных цепей УПС-Ц в диапазоне частот 1+64 кГц в точках подключения к стыковой цепи ОЦК, не менее, дБ. 	43
 Допускаемый размах фазового дрожания на входе УПС-Ц, измеренный с использованием фильтров со спадом 20 дБ на декаду: 	
фильтра верхних частот с f среза 20 Γ ц и фильтра нижних частот с f среза 20 $\kappa\Gamma$ ц длительности тактового интервала, не более	0,25
фильтра верхних частот с f среза 3 к Γ ц длительности тактового интервала, не более	0,05
 Отсутствие проскальзывания сигнала при максимальной относительной нестабильности частоты генератора тактовых импульсов ООД, не более 	1 - 10-4
Максимальная относительная нестабильность частоты генератора тактовых импуль- зов УПС-Ц, не более	1 - 10-5
 Максимальная величина вносимых временных флуктуаций на выходе УПС-Ц (в торону ООД), не более длительности первода ТЧ передаваемого сигнала 	0,03

Примечание. Импульсы сигнала на выходе УПС-Ц в точках подключения к стыковой цепи ОЦК должны укладываться в маску (приложение 2).

 УПС-Ц должны обеспечивать возможность ручной установки шлейфа на стороне стыка С2 (или физической линии) и шлейфа на стороне стыка с ОЦК.

Шлейф на стыке C2 должен быть образован между цепями стыка 103 и 104. Шлейф на стыке с ОЦК должен быть образован между выходом передатчика и входом приемника УПС-Ц.

ПРИЛОЖЕНИЕ 1

РЕЖИМЫ УПЛОТНЕНИЯ ПОТОКОВ ДАННЫХ И СТРУКТУРА ЦИКЛА ВРЕМЕННОГО УПЛОТНЕНИЯ

1. Режимы уплотнения УПС-Ц-С

- УПС-Ц-С должны иметь следующие основные режимы уплотнения потоков данных в ОЦК 64 кбит/с:
 - $4 \times 16;$
 - 2×32 ;
 - $32: 2 \times 16:$
 - 16; 48.
 - 1.2. Режимы временного уплотнения потоков данных и структура цикла

Начало и конец цикла временного уплотнения должны определяться октетными сигналами.

Структура циклов временного уплотнения для вышеуказанных режимов уплотнения приведена соответственно на черт. 1—4.

Примечание. Цифры 1, 2, 3, 4 обозначают номера каналов.

2. Режимы уплотнения УПС-Ц-А

УПС-Ц-А должны иметь следующие режимы уплотнения в ОЦК 64 кбит/с.

9,6; 48;

 6×9.6 ;

 12×4.8 ;

 $4 \times 4.8; 4 \times 9.6;$

 8×2.4 ; 4×9.6 ;

 $8 \times 1,2;48$

При необходимости допускается применять режимы уплотнения, созданные из основных комбинаций. Структуру цикла временного уплотнения УПС-Ц-А определяют по согласованию с заказчиком.

СЕТЕВОЙ СТЫК ОЦК

1. Виды синфазных сигналов

На сетевом стыке ОЦК осуществляется обмен тремя видами синфазных сигналов в соответствующих сочетаниях для конкретных схем включения:

ЦС — вифровыми сигналами со скоростью передачи 64 кбит/с; ТС — тактовыми сигналами с частотой 64 кГц;

ОС — октетными сигналами с частотой 8 кГц.

При обмене синфазными сигналами в качестве стыкового используется относительный биимпульсный сигнал (ОБС).

2. Алгоритм формирования ОБС

Двоичные символы цифрового сигнала на каждом тактовом интервале Т передаются в виде биимпульса, т е. двух разнополярных импульсов длительностью Т/2.

При передаче двоичной единицы цифрового сигнала на ее тактовом интервале не изменяется порядок передачи полярностей импульсов по отношению к предыдущему тактовому интервалу.

При передаче двоичного нуля цифрового сигнала на его тактовом интервале порядок передачи полярностей импульсов изменяется на противоположный по отношению к предыдущему тактовому интервалу.

При передаче октетного сигнала на тактовом интервале, соответствующем началу октета, нарушается биимпульсность ОБС, т. е. на втором полутактовом интервале повторяется полярность импульса первого полутактового интервала.

3. Признаки синфазных сигналов в ОБС

Признаками символов цифрового сигнала в ОБС являются переходы (изменения полярностей сигнала) на границах тактовых интервалов. Наличие перехода соответствует передаче двоичной единицы цифрового сигнала, а отсутствие перехода соответствует передаче двоичного нуля цифрового сигнала.

Признаками тактового сигнала в ОБС стыка являются переходы в середине тактовых интервалов:

Признаками октетного сигнала в ОБС стыка является отсутствие переходов в середине тактовых интервалов.

4. Режимы включения стыка

Сетевой стык ОЦК должен обеспечивать соединения в следующих режимах:

сонаправленный стык (ТС и ОС передаются при передаче и приеме сигналов ОЦК в одном направлении c IIC);

противонаправленный стык (ТС и ОС передаются при передаче сигналов ОЦК в разных направлениях с ЦС, а на приеме — в одном направлении);

стык с центральным генератором (ТС и ОС подаются на стыки ОЦК от внешнего генератора).

Противонаправленный стык и стык с центральным генератором образуются на базе сонаправленного стыка добавлением цепи стыка для синхросигналов.

Во всех режимах используется один тип стыкового сигнала, причем по основным стыковым цепям передаются ЦС, ТС и ОС, а по выделенным цепям синхронизации — ТС и ОС.
В тех случаях, когда сигнал, передаваемый по ОЦК, не имеет октетной структуры, ОС по стыку может

не передаваться, а на входе октетного сигнала должен быть установлен уровень напряжения, соответствующий паузам в передаче ОС,

5. Требования к стыку на выходе ОЦК

Номинальная форма импульсов сигнала стыка — прямоугольная. Независимо от полярности напряжения импульсы сигнала стыка должны укладываться в маску, приведенную на черт. 5.

Маска передаваемого сигнала ОПК Номиналь нью —— импульс ±0.2ΜΚΕ $\pm 0,2MKC$ 42,5% am = T/2В-размах сиенала

Черт. 5

6. Требования к стыковой цепи ОЦК

Каждая стыковая цепь должна представлять собой симметричную пару проводов. Затухание на частоте 64 кГц должно быть в пределах от 0 до 6 дБ.

ПРИЛОЖЕНИЕ 3

МИНИМАЛЬНАЯ НОМЕНКЛАТУРА ЦЕПЕЙ СТЫКА С2

Таблица 2

Номер цепи	Навменование цепи
102	Сигнальное заземление или общий обратный провод
102 a	Общий обратный провод ООД
102 ô	Общий обратный провод АПД
103	Передаваемые данные
104	Принимаемые данные
105	Запрос передачи
106	Гогов к передаче
107	АПД готова
108.1	Подсоединить АПД к линии
109	Детектор принимаемого линейного сигнала канала данных
113	Синхронизация элементов передаваемого сигнала (источник — ООД)
114	Синхронизация элементов передаваемого сигнала (источник — АПД)
115	Синхронизация элементов принимаемого сигнала (источник — АПД)
141	Местный плейф
142	Индикатор шлейфа

Примечания:

В зависимости от конструкции УПС допускается для цепей 102, 102 а и 102 б использование одного общего обратного провода.
2. Цепи 113 и 114 одновременно не используют.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством связи СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 28.09.90 № 2586
- Стандарт соответствует международным рекомендациям МККТТ V2, V35—V.37, V.10, V.11, V.28, V.54, V.48
- 4. ВВЕДЕН ВПЕРВЫЕ
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
FOCT 18145—81	1.1; 2.7
FOCT 23675—79	1.1; 2.7
FOCT 27232—87	1.1; 2.7

- Ограничение срока действия снято по протоколу № 5—94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- 7. ПЕРЕИЗДАНИЕ. Июнь 2005 г.

Редактор М.Н. Максимова Технический редактор В.Н. Прусакова Корректор М.В. Бучная Компьютерная верстка В.Н. Грищенко

Сдано в набор 07,07.2005. Подписано в печать 25,07.2005. Формат 60×84¹/в. Бумата офсетная. Гаринтура Таймс. Печать офсетная. Усл. печ. л. 0,93. Уч.-изд. л. 0,60. Тираж 60 экз. Зак. 473. С 1553.

ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4.

www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «Стандартинформ» на ПЭВМ

Отпечатано в фядиале ФГУП «Стандартинформ» — тип. «Московский печатник», 105062 Москва, Лялин пер., б.

