Система стандартов безопасности труда

ОБОРУДОВАНИЕ ШТАНГОНАСОСНОЕ НАЗЕМНОЕ

Требования безопасности

Издание официальное

 $63\ 3-2001$

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минек

Предисловие

1 РАЗРАБОТАН Азербайджанским научно-исследовательским и проектно-конструкторским институтом нефтяного машиностроения (АЗИНМАШ), Государственной компанией «АЗНЕФТЕ-ХИММАШ» Азербайджанской Республики и Азербайджанским государственным научно-исследовательским институтом по охране труда и технике безопасности (АзГосНИИ ОТТБ) Гостехнадзора Азербайджанской Республики

ВНЕСЕН Азгосстандартом

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 13 от 28 мая 1998 г.)

За принятие проголосовали:

Наименовавие государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Республики Беларусь
Грузия	Грузстандарт
Республика Казахстан	Госстандарт Республики Казахстан
Кыргызская Республика	Кыргызстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикстандарт
Туркменистан	Главгосинспекция «Туркменстандартлары»
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 31 января 2001 г. № 43-ст межгосударственный стандарт ГОСТ 12.2.136—98 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2002 г.

4 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 2001

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

Система стандартов безопасности труда

ОБОРУДОВАНИЕ ШТАНГОНАСОСНОЕ НАЗЕМНОЕ

Требования безопасности

Occupational safety standards system. Sucker-rod pumping ground equipment.

Safety requirements

Дата введения 2002-01-01

1 Область применения

Настоящий стандарт распространяется на наземное штангонасосное оборудование (далее — оборудование) и устанавливает требования безопасности к его конструкции.

Стандарт пригоден для целей сертификации.

2 Нормативные ссылки

- В настоящем стандарте использованы ссылки на следующие стандарты:
- ГОСТ 2.601—95 Единая система конструкторской документации. Эксплуатационные документы
 - ГОСТ 2.602-95 Единая система конструкторской документации. Ремонтные документы
- ГОСТ 12.1.004—91 Система стандартов безопасности труда. Пожарная безопасность, Общие требования
- ГОСТ 12.1.010—76 Система стандартов безопасности труда. Взрывобезопасность. Общие требования
- ГОСТ 12.2.003—91 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности
- ГОСТ 12.2.007.0—75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности
- ГОСТ 12.2.040—79 Система стандартов безопасности труда. Гидроприводы объемные и системы смазочные. Общие требования безопасности к конструкции
- ГОСТ 12.2.049—80 Система стандартов безопасности труда, Оборудование производственное. Общие эргономические требования
- ГОСТ 12.2.088—83 Система стандартов безопасности труда. Оборудование наземное для освоения и ремонта скважин. Общие требования безопасности
- ГОСТ 12.2.132—93 Система стандартов безопасности труда. Оборудование нефтепромысловое добычное, устьевое. Общие требования безопасности
- ГОСТ 12.4.026—76 Система стандартов безопасности труда. Цвета сигнальные и знаки безопасности
 - ГОСТ 23941-79 Шум. Методы определения шумовых характеристик. Общие требования
 - ГОСТ 28996-91 Оборудование нефтепромысловое устьевое. Термины и определения

3 Определения

- 3.1 В настоящем стандарте применяют следующие термины с соответствующими определениями:
- 3.1.1 штангонасосная установка: Комплекс оборудования для оснащения штангонасосной скважины.

Примечание — В общем случае штангонасосная установка включает штангонасосный привод, штангонасосное устьевое и штангонасосное скважинное оборудование (устьевой шток, колонну насосных штанг, штанговый насос).

Издание официальное

1

3.1.2 штангонасосное оборудование: Совокупность технических средств, входящих в состав или эксплуатирующихся совместно со штангонасосной установкой.

Примечания

- 1 В зависимости от места расположения составных частей штангонасосной установки различают наземное и скважинное штангонасосное оборудование.
- 2 Устьевой шток, который в процессе работы располагается частично в скважине, частично вне ее, относят к скважинному оборудованию, рассматривая его как верхнее звено колонны насосных штанг.
- 3.1.3 штангонасосный привод: Привод штангонасосной установки, включающий, в общем случае, двигатель, трансмиссию, соединяющую его с механизмом, преобразующим вращательное движение двигателя в возвратно-поступательное или вращательное движение колонны насосных штанг, и систему управления привода.
- 3.1.4 станок-качалка: Балансирный механический штангонасосный привод, как правило, с преобразующим кривошипно-коромысловым механизмом и механическим (реже пневматическим) уравновешиванием.
 - 3.1.5 штангонасосная арматура: По ГОСТ 28996.

4 Требования

4.1 Общие требования

4.1.1 Оборудование должно соответствовать требованиям настоящего стандарта, ГОСТ 12.2.003 и ГОСТ 12.2.049.

Требования безопасности к оборудованию конкретного вида, не установленные настоящим стандартом, должны быть регламентированы в стандартах и технических условиях на это оборудование.

- 4.1.2 Меры безопасности при эксплуатации оборудования должны быть изложены в эксплуатационных документах по ГОСТ 2.601, а меры безопасности при ремонте оборудования в документации по ремонту по ГОСТ 2.602, с учетом требований «Правил безопасности в нефтегазодобывающей промышленности».
- 4.1.3 Пожаро- и взрывобезопасность оборудования должны соответствовать требованиям ГОСТ 12.1.004 и ГОСТ 12.1.010.
- 4.1.4 Требования безопасности, предъявляемые к электрооборудованию, монтажу электрических цепей, заземлению, исполнению электродвигателей, пускорегулирующей аппаратуре станций управления, должны соответствовать ГОСТ 12.2.007.0.
 - 4.1.5 Гидроприводы должны соответствовать требованиям ГОСТ 12.2,040.
- 4.1.6 Сигнальная предупредительная окраска и знаки безопасности, применяемые на оборудовании, по ГОСТ 12.4.026.

При этом шкивы, ограждения и места подачи смазки должны быть окрашены в красный или другой цвет, контрастный к цвету оборудования.

4.2 Требования охраны окружающей среды

- 4.2.1 Конструкция механической и (или) гидравлической передач штангонасосного привода должна обеспечивать:
- отсутствие утечек соответственно смазочной и гидравлической жидкостей в процессе эксплуатации;
- возможность сбора смазочного масла и гидравлической жидкости для их замены, регенерации и утилизации.
- 4.2.2 Уровень звукового давления при установившемся режиме работы привода штангонасосной установки не должен превышать 90 дБА.

П р и м е ч а н и е — Уровень звукового давления следует измерять в зоне штангонасосного привода, обслуживаемой в процессе его работы. Например, для станка-качалки — на высоте 0,8 м над рукояткой тормоза.

- 4.2.3 Утилизацию штангонасосного оборудования и его составных частей (в связи с достижением предельного состояния и (или) списанием) следует осуществлять по нормам утилизации нефтепромыслового оборудования, установленным органами охраны окружающей среды.
- 4.3 Требования безопасности к конструкции устыевых арматур и сальников штангонасосных скважин по ГОСТ 12.2.132.

4.4 Требования к штангонасосным приводам

- 4.4.1 Конструкция штангонасосного привода (размещение агрегатов, узлов, систем управления и др.) должна обеспечивать удобство и безопасность монтажа, технического обслуживания и ремонта.
- 4.4.2 Тормозное устройство должно быть рассчитано на тормозной момент, действующий на привод в неподвижном состоянии при отсоединенной от привода штанговой колонне и максимальном крутящем моменте по характеристике привода.

4.4.3 Тормозное устройство должно иметь конструкцию, обеспечивающую его работу при усилии, прикладываемом к тормозной рукоятке, не превышающем 150 Н.

Местонахождение рукоятки тормозного устройства должно исключать возможность травмирования рабочего в процессе работы и быть удобным для технического обслуживания.

- 4.4.4 Проволочный канат подвески устьевого штока должен иметь коэффициент запаса прочности (отношение разрывного усилия к номинальной нагрузке) не менее 5.
 - 4.4.4.1 Концы каната должны быть заделаны,
- 4.4.5 Места ввода смазочного материала и устройства для контроля уровня смазочного масла в механизме привода штангонасосной установки должны быть удобны для обслуживания.
- 4.4.6 Штангонасосные приводы, оснащенные двигателями внутреннего сгорания, должны быть оборудованы системой искрогашения.
 - 4.4.7 Требования к станкам-качалкам¹⁾
- 4.4.7.1 Расстояние от переднего плеча балансира станка-качалки при откинутой в сторону или наверх головке балансира до оси скважины должно быть не менее:
- 250 мм для станков-качалок с наибольшей допускаемой нагрузкой на устьевой шток до 30 кH; 500 мм — для станков-качалок с наибольшей допускаемой нагрузкой на устьевой шток свыше 30 кH.
- 4.4.7.2 Головка балансира станка-качалки должна быть шарнирной для обеспечения доступа к скважине при ее обслуживании и ремонте.

Головка балансира должна иметь надежное стопорение в рабочем положении, а при освобождении стопорного устройства должен быть обеспечен плавный поворот головки без необходимости подъема рабочего на балансир.

4.4,7.3 Конструкция крепления кривошипных противовесов к кривошипу должна исключать возможность их самопроизвольного перемещения и падения при работе станка-качалки.

Перемещение кривошипных противовесов должно быть механизировано.

- 4.4.7.4 Балансирные противовесы должны быть массой не более 40 кг. Конструкция крепления противовесов должна исключать возможность их самопроизвольного падения с балансира.
- 4.4.7.5 Тормозное устройство должно обеспечивать при отключенном двигателе плавное и надежное торможение при любом положении кривошипов (как при наличии нагрузки на головке, так и без нее).
 - 4.4.8 Требования к штангонасосным приводам, отличающимся от станков-качалок
- 4.4.8.1 В штангонасосных приводах, устанавливаемых непосредственно на устье скважины, не должны нарушаться условия работы устьевого оборудования:
- должны быть исключены нагрузки, которые могли бы привести к нарушению условий работы устьевого оборудования — превышению допускаемых напряжений в элементах устьевого оборудования, нарушению герметичности и пр.;
- должны быть обеспечены условия эксплуатационного контроля и обслуживания устьевого оборудования.
- 4.4.8.2 Штангонасосные приводы, включающие в себя грузоподъемные сооружения (вышку, мачту, подъемную дебедку и т.п.), предназначенные для проведения спуско-подъемных работ при ремонте скважин, должны соответствовать требованиям ГОСТ 12.2.088.
 - 4.5 Требования к устройству средств защиты, входящих в конструкцию
 - 4.5.1 Требования к системам блокировки электропривода
- 4.5.1.1 Органы ручного воздействия на вводный выключатель штангонасосного привода должны находиться снаружи электрошкафа и располагаться на высоте не менее 600 мм и не более 1600 мм.

Установка вводного выключателя на дверцах шкафа не допускается.

- 4.5.1.2 Привод должен иметь систему защиты, автоматически отключающую энергопитание двигателя в случае выхода из строя какого-либо узла привода, а также при внезапном самопроизвольном снятии нагрузки с головки балансира (слом устьевого штока, обрыв и отворот штанг, разрушение канатной подвески).
 - 4.5.2 Требования к оградительным устройствам и площадкам
- 4.5.2.1 Кривошипно-шатунный механизм штангонасосного привода должен иметь ограждение на всю зону вращения кривошипа.

¹⁾ Требования распространяются и на другие виды приводов штангонасосных установок, имеющих составные части аналогичного устройства и назначения (приводы с фигурным балансиром, безбалансирные приводы с грузовым уравновещиванием крутящего момента и пр.).

При установке ограждения на расстояние 350 мм и более от кривошипно-шатунного механизма оно может быть выполнено в виде перил, а на расстояние менее 350 мм должно быть сплошным или сетчатым в металлической оправе. Высота перильного ограждения — не менее 1,2 м; высота сетчатого ограждения — не менее 1,8 м.

- 4.5.2.2 Ведущий шкив клиноременной передачи должен иметь сплощное легкосъемное огражление.
- 4.5.2.3 Над канатным шкивом безбалансирного станка должен быть установлен кожух, при этом зазор между кожухом и ребордой канатного шкива должен быть не более 0,3 диаметра каната.
- 4.5.3 Приводы штангонасосных установок следует оснащать лестницами для обслуживания узлов, находящихся на высоте 0.75 м и выше над уровнем рамы.

Лестницы-стремянки должны быть шириной не менее 0,4 м и в верхней части должны снабжаться предохранительной дугой радиусом 0,3; 0,4 м.

4.6 Требования безопасности при монтажных, наладочных работах, транспортировании и хранении

- 4.6.1 Соединение (отсоединение) подвески устьевого штока с головкой балансира должно осуществляться с помощью приспособления, обеспечивающего безопасное проведение работ и исключающего необходимость подъема рабочего на балансир.
- 4.6.2 Для монтажа оборудования массой свыше 20 кг следует применять грузоподъемные механизмы.
- 4.6.3 Рама электроприводной штангонасосной установки должна быть надежно заземлена. В качестве заземлителя должен быть использован кондуктор скважины, связанный с рамой станка-качалки не менее чем двумя стальными проводниками, приваренными к раме и кондуктору и разных местах. Сечение каждого проводника должно быть не менее 48 мм.
- 4.6.4. При установке электродвигателя на поворотных салазках он должен быть заземлен на раму установки гибким стальным проводником сечением не менее 35 мм.
- 4.6.5 Металлический шкаф блока управления или другого пускозащитного устройства должен иметь заземляющий болт, к которому возможно присоединение заземляющего проводника как снаружи, так и внутри шкафа.
- 4.6.6 Заземляющие проводники и места их механического присоединения должны быть доступны для осмотра.
 - 4.6.7 Применение стального каната в качестве проводников не допускается.
 - 4.6.8 Около заземляющего проводника должен быть знак заземления.
- 4.6.9 Станции (пульты) управления штангонасосными приводами должны быть расположены в месте, удобном и безопасном для обслуживающего персонала и не должны препятствовать размещению у устья скважины оборудования для технического обслуживания и ремонта.
- 4.6.10 У скважины, оснащенной станком-качалкой, должна быть оборудована площадка для обслуживания электропривода и тормозного устройства. Ширина площадки не менее 750 мм, полезная площадь 0,6 м² на каждого работающего.

Площадка должна иметь настил с поверхностью, уменьшающей возможность скольжения.

- 4.6.11 Для обеспечения безопасной установки балансира на стойку станка-качалки он должен быть оборудован монтажными приспособлениями (отверстия, монтажные петли) или должны применяться специальные грузоподъемные приспособления.
 - 4.6.12 В конструкции противовесов должны быть предусмотрены места их строповки,
- 4.6.13 Транспортирование и хранение оборудования в соответствии с требованиями стандартов и технических условий на оборудование конкретного вида.

4.7 Методы контроля выполнения требований безопасности

- 4.7.1 Соответствие оборудования требованиям безопасности следует контролировать при:
- экспертизе технического задания и конструкторской документации;
- приемочных (государственных) испытаниях опытных образцов (партий) оборудования;
- согласовании и утверждении государственных стандартов и технических условий на оборудование:
 - сертификационных испытаниях;
 - периодических испытаниях оборудования серийного производства;
 - испытаниях после модернизации и капитального ремонта.
- 4.7.2 Методика выполнения измерений для определения шумовых характеристик оборудования — по ГОСТ 23941.
- 4.7.3 Объем испытаний и методы измерений должны устанавливаться стандартами и техническими условиями на оборудование конкретного вида.

УДК 621.65-229.3:006.354

MKC 13,100

T58

OKII 36 6520

Ключевые слова: штангонасосное оборудование, штангонасосная установка, штангонасосный привод, станок-качалка, штангонасосная арматура, устьевой сальник, редуктор станка-качалки, клиноременная передача, головка балансира, кривошипный противовес

Редактор Р.Г. Говердовская
Технический редактор Н.С. Гришанова
Корректор М.С. Кабашова
Компьютерная верстка В.И. Грищенко

Изд. лиц. № 02354 от 14.07.2000.

7.2000. Сдано в набор 15.06.2001. Уч.-изд. л. 0,70 Тираж 000 экз. Подписано в печать 09.07.2001. С 1406. Зак. 678.

Усл. печ. л. 0,93.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", 103062; Москва, Лядин пер., 6. Плр № 080102

