

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ОСНОВНЫЕ НОРМЫ ВЗАИМОЗАМЕНЯЕМОСТИ

ПЕРЕДАЧИ ЗУБЧАТЫЕ КОНИЧЕСКИЕ И ГИПОИДНЫЕ

допуски

FOCT 1758-81 (CT C3B 186-75, CT C3B 1161-78)

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

Редактор А. Л. Владикиров Технический редактор М. И. Максимова Корректор Е. И. Евтесва

Сдане в наб. 14.11.86 Поди. в неч. 16.02.87 2,75 усл. п. л. 2,75 усл. вр.-отт. 2,47 гл. окр. л. Тир. 20.000

Ордена «Знак Почета» Мадательство стандартов, 12.840, Москва, РСП, Новопресченая и п.р., 3 Тип. «Московский печатинк». Москва, Лелин пер., 6. Зек. 2925

ГОСУДАРСТВЕННЫЙ CTAHAAPT CO 10 3 A C C P

Основные нормы взаимозаменяемости ПЕРЕДАЧИ ЗУБЧАТЫЕ конические и гипоидные

Допуски

Basic norms of interchangeability. Bevel and hypoid gears. Tolerances

FOCT 1758-81

(CT C3B 186-75, CT C3B 1161--78]

> Взамен FOCT 1758-86

Постановлением Государственного комитета СССР по стандартам от 18 июня 1981 г. № 3000 срок введения установлен

< 01.01.82

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на конические и гипоидные зубчатые передачи и пары (без корпуса) внешнего зацепления с прямыми, тангенциальными п криволинейными звубьями со средним делительным диаметром зубчатых колес от 4000 мм, средним нормальным модулем от 1 до 55 мм с прямолинейным профилем исходного контура и номинальным углом его профиля 20° (для зубчатых колес гипоидных передач за номинальный угол профиля. принимается среднее арифметическое значение углов профиля на противоположных сторонах зубьев).

Стандарт полностью соответствует СТ СЭВ 186-75, а в части терминов и обозначений стандартам — СТ СЭВ 643—77 и

CT C9B 1161—78.

1. СТЕПЕНИ ТОЧНОСТИ И ВИДЫ СОПРЯЖЕНИЙ

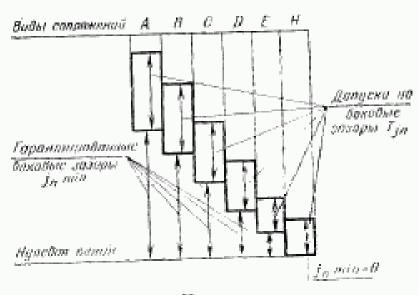
 Устанавливаются двенадцать степеней точности зубчатых. колес и передач, обозначаемых в порядке убывания точности пифрами 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 и 12.

Примечание. Для степеней точности 1, 2 и 3 допуски в предельные отклонения не даны. Эти степени предусмотрены для будущего развития,

1.2. Для каждой степени точности зубчатых колес и передач устанавливаются нормы: кинематической точности, плавности работы и контакта зубъев зубчатых колес в передаче.

Издание официальное

Перепечатка воспрещена



Переиздание. Январь 1987 г.

2 - 2925

- 1.3. Допускается комбинирование норм кинематической точности зубчатых колес и передач, норм плавности работы и норм контакта зубьев различных степеней точности.
- 1.4. При комбинировании норм разных степеней точности, нормы плавности работы зубчатых колес и передач могут быть не более чем на две степени точнее или одну степень грубее норм кинематической точности; нормы контакта зубьев не могут назначаться по степеням точности более грубым, чем нормы плавности.
- 1.5. Устанавливаются шесть видов сопряжений зубчатых колес в передаче, обозначаемых в порядке убывания гарантированного бокового зазора буквами A, B, C, D, E и H (черт. 1).

Виды сопряжений и гарантированные боковые зазоры

Черт. 1

Примечание. Сопряжение вида B обеспечивает минимальную величину бокового зазора, при котором исключается возможность заклививания стальной или чугунной передачи от нагрева при разности температур зубчатых колес и корпуса (чугунного или стального) в 25° С.

Виды сопряжений зубчатых колес в передаче в зависимости от степени точности по нормам плавности работы указаны в табл. 1.

				T 4	блип	ça I
Вид сопряжения	A	В	¢	b	E	rl
Степень точности по порман илав- вости работы	4—12	411	4—9	4—8	4—7	4-7

Примечание. Приведенные в табл. 1 днапазоны степеней точности являются орвентировочными при выборе боковых заворов. В необходимых случанх гарантированный боковой завор может устанавливаться независимо от выдов сопряжений, указанных в табл. 1.

 Точность изготовления конических и гипоидных зубчатых колес и передач задается степенью точности, а требования к боковому зазору — видом сопряжения по нормам бокового зазора*.

Пример условного обозначения точности передачи или пары со степенью 7 по всем трем нормам точности, с видом сопряжения зубчатых колес С:

7-C FOCT 1758--81

Пример условного обозначения точности передачи со степенью точности 7, гарантированным боковым зазорам 400 мкм (не соответствующим ни одному из указанных видов сопряжения):

1.7. При комбинировании норм разных степеней точности точность зубчатых колес и передач обозначается последовательным написанием трех цифр и буквы. Первая цифра обозначает степень по нормам кинематической точности, вторая — степень по нормам плавности работы, третья — степень по нормам контакта зубъев и буква — вид сопряжения. Между собой цифры и буква разделяются тире.

Пример условного обозначения точности передачи со степенью 8 по нормам кинематической точности, со степенью 7 по нормам плавности работы, со степенью 6 по нормам контакта зубьев, с видом сопряжения В:

1.8. Термины и обозначения, используемые в настоящем стандарте, соответствуют стандартам СТ СЭВ 643—77 и СТ СЭВ 1161—78 и приведены в справочном приложении 1.

2. НОРМЫ ТОЧНОСТИ

- Показатели кинематической точности, устанавливаются по табл. 2.
- 2.1.1. Если кинематическая точность зубчатых колес относительно рабочей оси (см. п. 2.10) соответствует требованиям настоящего стандарта и требование селективной сборки не выдвигается, контроль кинематической точности зубчатых передач не обязателен.
- При соответствии кинематической точности окончательно собранной передачи требованиям настоящего стандарта контроль кинематической точности зубчатых колес не является необходимым.

См. дополнательно в. 2 справочного приложения 4

Показатели иннематической точности

					C	тепень	точност	В		
Қонтролируемый объект	Показатель точности или комплекс	4	5	6	7	8	9	10	11	12
Зубчатые колеса	F' _{lr}	×	×	×	×	×		_	_	
	$F_{pr} \bowtie F_{pkr}$	Χ.	×	×		_		_	700	_
	Fpr	_	_		×	Х	_	_	_	_
	Frr H Fcr	×	×	×	х	×	-	_	_	_
	F _{rr}	_			×**	×**	×	×	×	×
Зубчатые пары (поставляемые	F" _{(Zor}				_	_	×	×	×	×
без корпуса)	F* _{/Ser} , it F* _{cr}	_	×	×	×	×		_	_	_
Зубчатые пере- дачи	F' _{for}	X	×	×	×	×	_	_		_
	F _{VJr} и F* _{cr}	*****	×	×	×	×		_	_	_
	F _{V/r}	_	_	_		_	×	×	×	×

* Для колеса и шестерии пары и передачи

^{**} Для зубчатых колес со средним делительным днаметром свыше 1600 мм Примечания:

^{1.} Допускается, чтобы одна из величии, входящих в комплекс F_{rr} и F_{er} и F_{er} и F_{er} , превосходила предельное значение, если суммарное влияние обенх величин не превышает F'_{t} .

^{2.} Допускается вместо $F_{1 \Sigma^{0,r}}$ в качестве показателя кинематической точности использовать:

колебанне относительного положения зубчатых колес пары по нормали за полный цикл \mathbf{F}''_{inot} , при этом принимается $\mathbf{F}'_{ino} = \mathbf{F}''_{ino}$ (см. табл. 5);

колебание измерительного межосевого угла измерительной пары $F''_{i_{\Sigma}}$, чли относительного положения зубчатых колее измерительной пары по вормали за оборот зубчатого колеса $F''_{i_{\infty}}$. Долуски $F''_{i_{\Sigma}}$ и $F''_{i_{\infty}}$ устанавливаются раквыми 0,7 $F''_{i_{\infty}0}$.

2.2. Показатели плавности работы устанавливаются по табл. 3 для степеней точности 4—8 в зависимости от граничных значений номинального коэффициента осевого перекрытия и степени точности по нормам контакта (табл. 4), для степеней точности 9-12 независимо от ва

Показатели плавности работы

Таблица 3

					Степ	emb Tow	ности			
Қонтролируемый объект	Понадатель точности или комплекс	4	5	6	7	8	9	10	. 11	12
Зубчатое колесо передачи (пары) с є _р не менее ука- занного в табл, 4	\mathbf{f}_{xkr} изи \mathbf{f}_{ptr} и \mathbf{f}_{er}	×	×	×	×	×		_	_	
Santor a raw, 4	f _{Pir}			_	_		×	×	×	×
Зубчатое колесо передачи (пары)	f_{ptr} a f_{er}	×	×	×	×	×		_	_	-
с в _в менее ука- завного в табл. 4	i _{Pir}		_	_	_		×	×	×	×
Зубчатая пере- дача с є _в не ме-	fakor H fame	×	×	×	×	×	-	_		_
нее указанного в табл. 4	f _{AMr}			_			×	×	×	×
Зубчатая пере- двча с г _в менее	fazir u f _{AMr}	×	×	×	×	×			_	
указанного в табл, 4	f _{AM} ,		-			_	×	×	×	×
Зубчатая пара с любым е _в	f″ _{tΣor}	~~	-		-	-	×	×	×	×
	ĺ		ı	-				į		

Примечания:

- 1. Взамен отклонения шага Срти в качестве одного из показателей может применяться разность любых шагов і вет-
- Показатель f_{AM}, контролируется для каждого элемента передачи
 При вевозможности осуществлять контроль коннческих и галондинах передви 7 и 8 степеней гочности по комплексу fixer и f. м. допускается производить их контроль по Іріг с обязательным комплектованием пар на контрольно-обкатном стакке по зоне касания.

 Допускается вместо і"_{«Хо}» в качестве показателя плавности работы вспользовать:

колебание относительного положения зубчатых колес пары по нормали на одном зубе $f''_{i,n,n'}$, при этом принимается $f''_{i,n,n'} = f''_{i,n,n}$ см. табл. 7);

колебание измерительного межосеного угла измерительной пары $\mathbf{f}''_{1\mathbf{X}'}$ или относительного положения зубчатых колес измерительной пары по нормали на одном зубе \mathbf{f}''_{1n} . Допуски $\mathbf{f}''_{1\mathbf{X}}$ и $\mathbf{f}''_{1\mathbf{X}}$ устанавливаются равными 0,7 $\mathbf{f}''_{1\mathbf{X}^0}$.

Граничные значения ед

Таблица 4

Степень точности по мормам контакта	4~5	6-7	8.
воэффициента осеного перекрытия Граничные значения поминального	1,35	1,55	2,0

2.2.1. Если плавность работы зубчатых передач или пар соответствует требованиям настоящего стандарта, контроль плавности работы зубчатых колес не является необходимым.

2.3. Показателями, определяющими контакт зубьев, являются: в паре — отклонения относительных размеров суммарной зоны касания F'_{shr} и F'_{shr} ; в передаче — отклонения относительных размеров суммарного пятна контакта F_{shr} , F_{shr} и f_{gr} .

2.4. Правила определения суммарного пятна контакта, его относительные размеры и расположение на сопряженных поверхностях зубьев назначаются конструктором передачи в зависимости от ее служебного назначения, степени нагруженности, жесткости и геометрических особенностей рабочих поверхностей зубьев зубча тых колес.

Для передач, имеющих продольную модификацию зубьев, не допускается выход суммарного пятна контакта на кромки зуба у внутреннего или внешнего торцов.

Для передач, имеющих профильную модификацию, не допускается выход суммарного пятна контакта на кромки у вершин зубьев, а также разрывы пятна контакта по высоте.

Примечание, Если не указаны специальные требования по нагрузке (торможению) зубчатой передачи, пятно контакта устанавливают при легком торможении, обеспечивающем непрерывное контактирование зубьев сопряженных зубчатых колес.

- 2.5. Зока касания и ее расположение на поверхности зуба устанавливаются в зависимости от требований к данной передаче или согласно справочному приложению 2.
- Допуски и предельные отклонения по нормам кинематической точности, нормам плавности работы и нормам контакта зубь-

ев для различных степеней точности зубчатых колес и передач устанавливаются по табл. 5—12.

Примечание. Зависимости допусков и предельных откловений от геометрических параметров зубчатых колес и передач привелены в справочном приложении 3,

2.7. Нормы кинематической точности, кроме F_r , F''_{izo} и F_{vj} , нормы плавности работы и нормы контакта зубьев в передаче в зависимости от условий работы зубчатых колес различными сторонами зубьев по разноименным профилям допускается назначать из разных степеней точности.

По каждой из норм степень точности шестерии и колеса передачи должна назначаться единой.

Таблица 5 Нормы кинематической точности (Показатели F'₁₇, F_{rr}, F''_{1x0r}, F_{vrr}, F_{cr})

			- 4					
Ē			Cpe	эд бынд:	интельн		етр 4. к	rsi .
Степень Точмости	Обозначение	Средний нормальный модуль т _л , мм	По 425	Ca. 125 ats 400	Ca. 400 до 800	S00 до 1600	Ca. 1930 Ao 2500	Cs. 2509 4to 4000
-					78.0			
	F'i	От 1 до 10		° _P + 1,1	5 f _e (cs	с. п. 2	примеч	ания)
4	Fr	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10	10 11 13	15 16 18	18 20 22	22 25		=
	Fe	От 1 до 10	6	12	18	28	45	
	F'4	От 1 до 16	f	$r_p + 1.10$	5 fe (€N	с. п. 2	примеч	ания)
	F,	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16	16 18 20 22	22 25 28 32	28 32 36 40	36 40 45	 45 50	_ 56
5	F″ _{(E0}	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16	30 34 38 45	45 48 53 56	56 63 67 80	67 71 80 90	=	=
	F.,	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16	21 24 26 30	30 34 36 40	40 42 45 50	50 56 60	- 60 71	= - 75

Продолжение табл. 5

			Средвий делительный двамогр d. мм					
Chereka Tombik In	Обыначение	Срединй нормальный модуль те _й , мы	251 ell.	Ca. 125 40 +00	Ch. 400	Ca. 830 an 1600	Cs.1610	Cir. 2500 20.0000
5	F.	От 1 ло 16	10	18	28	45	70	90
	F'i	От 1 до 16	Fp+1,15 fc (см. п. 2 примечания					
-	F,	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16	25 28 32 36	36 40 45 50	45 50 56 63	56 63 71	71 80	90
6	F.,'Ea	От 1 до 3,5 Со, 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16	48 53 60 71	71 75 85 95	90 100 105 120	100 110 125 140	_	=
	F _{4.j}	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16	34 36 42 48	50 53 56 63	63 67 75 80	75 90 100	100	120
	Fe	От 1 до 16	16	28	45	70	110	140
	F'i	От 1 до 25	I	$r_p + I$	5 f, (cx	α. π. 2	примеч	aucs)
	F,	Or 1 до 3,5 Св. 3,5 до 0,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25	36 40 45 50 60	50 56 63 71 80	63 71 80 90 100	80 90 100 112		125 140
7	F",20	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25	67 75 85 100	100 105 120 130 150	130 140 150 160 180	150 160 180 200 200	=	- - -
	Føj.	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Сс. 16 до 25	48 53 60 67 80	71 75 80 90 105	90 100 100 110 130	110 125 140 150	140 160 180	170 200
	Fe	От 1 до 25	22	40	60	100	160	200

Продолжение табл. 5

							ine vao	
- E	1		Che	5月11年 馬克.	THY \$ A SAN	S Amam	erp d, se	*
Стовена точности	S S S S S S S S S S S S S S S S S S S	Средний игрэцальный модуль Иг _и зам	8	7.8 125 24 100	4.5 400 3.0 850	C.h. 800 Ao 1604	Ca. 160d 15 250d	7n. 2hall 20 4000
0.000	F':	От 1 до 56	F	p + 1.10	5 fr (cu	. п. 2	примеч	auus)
_	r.	От ! до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до !6 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	45 50 56 63 75	63 71 80 90 100 120	80 90 100 112 125 140 170	100 112 125 140 160 190	125 140 160 190 220	160 180 224 240
	FatEe	От і до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	85 95 105 120 150	125 130 150 160 190 240	160 170 190 200 240 280 320	180 200 220 250 280 320 340		
	F.,	От I до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	60 63 75 85 100	85 90 100 110 130 160	110 120 130 140 160 190 220	140 160 170 190 220 260	170 200 220 260 280	220 250 300 320
	Fe	От 1 до 55	28	50	80	120	200	250
	F.	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	56 63 71 80 95	80 90 100 112 125 150	100 112 125 140 160 180 200	125 140 160 180 200 240	160 180 200 240 280	200 224 280 320
9	F″4 <u>*</u> 0	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 См. 16 до 25 Св. 25 до 40 Св. 40 до 55	110 120 130 150 180	160 170 180 200 220 280	200 220 220 260 280 340 400	240 250 280 320 340 400 450		

Продолжение табл. 5

			Просолжение тиол. 5 Средний делительный двиметр d, мм						
Ē			Coc	даний до	watenbe	ый двах	erp d, s	138	
Степень точности	Обозвачение	Средний нормальный модуль <i>т_{пр}.</i> мм	До 125	Cir. 125 20 400	C. 200	Ca. 800	Cs 1600 ao 3500	Ca, 2500 40 4000	
9	Fuj	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	75 80 90 105 130	110 120 130 140 160 200	140 150 160 180 200 240 280	170 200 220 240 280 320	220 250 280 320 360	280 320 375 420	
	F,	От I до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	71 80 90 100 120	100 112 125 140 160 180	125 140 160 180 200 224 260	160 180 200 224 260 300	200 224 250 300 340	250 280 355 400	
10	F"420	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	130 150 170 190 220	190 200 220 250 280 360	260 280 300 320 360 420 500	280 320 360 400 450 500 560	111111	111111	
	Feg.	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	90 100 120 130 160	140 150 160 170 200 250	180 190 200 220 250 300 340	220 250 270 300 340 400	280 300 360 400 450	340 400 450 530	
11	F,	O7 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	90 100 112 120 150	125 140 160 180 200 220	160 180 200 224 250 280 315	200 224 250 280 315 380	250 280 315 380 450	315 355 450 530	
11	F''': 20	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	170 190 220 240 280	250 260 280 320 375 450	320 840 360 400 450 530 630	360 400 450 500 560 630 750	-	- - - -	

Продолжение табл. 5

	Е Средний делительный диаметр d. ми							
E			Cpe	дана де	китежьн	ий диам	етр d, м	N.
Степевь точностя	Обозначение	Срединй вормальный модуль т _п . мы	321 077	Ca. 125 20 400	Ch. 400	Ch. 800	Cs. 1600 20 2500	Ca. 2500 30 4000
11	Fej	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	120 130 150 170 200	170 180 200 220 250 300	220 240 260 280 300 380 450	280 320 340 380 450 500	340 400 450 500 560	 420 500 560 670
	F,	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	112 125 140 150 180	160 180 200 224 250 280	200 224 250 280 315 360 420	250 280 315 360 420 480	315 355 400 480 560	400 450 560 630
12	Figs	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	200 240 260 300 360 —	300 340 360 400 450 560	400 420 450 500 560 670 800	450 500 560 600 670 800 900		=
;	F _{sf}	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16 Св. 16 до 25 Св. 25 до 40 Св. 40 до 55	150 160 180 200 250	200 220 250 280 320 400	250 300 320 340 380 450 560	360 400 440 480 530 630	 450 500 560 630 710	530 630 710 800

Примечания:

Принятые обозначения:
 F'_i — допуск на кинематическую погрешность зубчатого колеся;
 F_r — допуск на биение зубчатого венца;
 F_e — допуск на погрешность обката;

F" (до -- допуск на колебание измерительного межосевого угла пары за полвый цика:

F_{иј} — допуск на колебание бокового зазора в паре:

2. Для определения \mathbf{F}'_{c} принямают $\mathbf{F}_{p}\!=\!\mathbf{F}_{pk}$ по табл, 6 при $k\!=\!\frac{x}{2}$ (нав ближайшем к вему целом большом числе) и fa по табл. 7.

 Допуск F^{*} то на наибольшую кинематическую погрешность передачи равен сумме допусков на кинематическую в прешность ее зублатых колес. Для передач, составленных вз зублатых колес, вмеющих кратные между собой числа зубьев при отношения этих чисел не более трех (1, 2, 3), допуск на наибольшую кинематическую погрешность передачи, при ее селективной сборке, межет быть сокращен на 25% или более, исходя из расчета.

 Допуск на колебание бокового зазора в передаче F_{*,1} принимается для днаметра, равного полусумые средних делительных днаметров шестории и колеса. Для передач, составленных из зубчатых колес, имеющих кратные между собой числа зубьев при отношении этих чисел не более трех (1, 2, 3), допуск на колебание бокового зазора в передаче, при ес селективной оборке, может быть

сокращен на 25% или болес, исходя на расчета,

5. Допуск на поступательные перемещения одного из элементов пары в напначальных равлении, перепендикулярном $F'_{ing} = F''_{ing}$ общей образующей -

6. Допуск Разм на колебавие измерительного межосевого угла пары за полный цикл принимается для диаметра, равного полусумые средиих дели-

тельных диаметров шестерии и колеса,

2.8. Комплексы показателей точности в соответствии с пп. 2.1, 2.2 и 2.3 и показатели, обеспечивающие гарантированный боковой

зазор, устанавливаются изготовителями передач.

Каждый установленный комплекс показателей точности, вспельзуемый при контроле передачи, является равноправным с другим. При сравнительной (например, расчетной) оценке влияния точности передач на их эксплуатационные качества, предпочтительными для всех видов передач являются функциональные локазателы F'_{ior} , f_{zzor} , f_{zkor} и относительные размеры суммарного контакта или его отклонения F_{str} и F_{shr} .

2.9. Непосредственный контроль зубчатых колес и передач по всем показателям установленного комплекса не является обязательным, если изготовитель существующей у него системой контроля точности производства гарантирует выполнение соответствующих требований настоящего стандарта.

2.10. Требования настоящего стандарта относятся к зубчатым

колесам, установленным на их рабочих осях.

Погрешности, вносимые при использовании в качестве измерительных баз поверхностей, имеющих неточность формы и расположения относительно рабочей оси вращения (например, поверхности отверстия зубчатого колеса, ось которого может не совпадать с рабочей осью), должны быть компенсированы уменьшением производственного допуска или учтены при установлении точности передачи.

Нормы иннематической точности

(Показатель Ерд.)

İ	1	600G 19(1)		Ŧ	绮	200	082	400	
	1	CB, 4000 до 5000		[74 22 22	180	88	355400	
		000b og 0818 aD.	CONTRACTOR CONTRACTOR	Ē	100	8	\$	10 10	
		CB. 2500 Jus 3150		笺	3	9+1	200	280	_
		C# 1600 TO 2200		2	5	2	3	\$24	_
		CB, 1900 No 1600		\$	8	100	9.	2007	
	×	Ca. Glu no 1000		왕	8	8	=	99	
	ayra C. N	CH 213 W 690	Kaik	認	¥	2	8.	52	
	Данна д	Ce, 150 ao 315	3	<u>~</u>	57 57	\$	3	8	
		ent ey us ac		53	93	8	바	63	_
		68 on 66 .nO		2	2	61 100	36	3	
		Ca. 32 4o 50		6	<u>च</u>	3	æ	9	
		차 야발(g '47)			2	20	28	9	
		(% 04, %.11 .m⊃		9	5	<u>'</u>	24	尺	
		£,11 off.		15.	(~	=	2	22	
		THE SECTION AND A SECTION ASSESSMENT OF THE		5	4	\$	160 08	64 80	
		Средний норужельный медуль ти		3			_	_	
		\$ \$ \$ \$		ĺć					
		4/3/1/4/1/50	90			14	An Andrews		
		63 S0060 20508	April 1	-	1.72	1_7	(90	

11. 存储效应等进程规则

Е_{ры} — допуск на накопленную погрешность & шагов. требований

допуск Еза назначается для дляны дуги средней делительной окближайшему луги, соответствующей зубчатого колеса (или ужьюсти, соответствующей 1/4 части числя зубьев 2. При отсутствии специальных

юльшему чисту зубьев). 3. Допуск Рун Гри при х-г/2 (или ближайшему большему чисту)

Таблица 7

Нормы плавности работы (Показатели fptr, for, fivor)

(HOKESATEAH lptr, lor, ligor)										
E 15			Средиий делительный диаметр d, мы							
Отепень точноств	Обозначение	Средний нермальный медуль т _и , мм	Alo 125	Ca. 125 40 400	Ca. 400	Cs. 800 340 1600	Ch. 1000 Ao 2500	CB. 2500 Ao 4000		
4	ſ _p ,	От 1 до 3,5 Св. 3,5 до 6,3 » 6,3 » 10	±4 ±5 ±5,5	±4,5 ±5.5 ±6	±5 ±5,5 ±7	_ ±7	 ±8	_		
	í.	Or ! до 3,5 Св. 3,5 до 6,3 * 6,3 » !0	3 4 4	4 4 5	5 5 6	 6 7	- 9	=		
5	í,	Or 1 до 3,5 Св. 3,5 до 6,3 > 6,3 > 10 > 10 > 16	#8 ### ###	±7 ±9 ±10 ±11	±8 ±9 ±11 ±13	±10 ±11 ±13	±13 ±14	±16		
5	Íe	От I до 3,5 Св. 3,5 до 6,3 > 6,3 > 10 > 10 > 16	4 5 6 7	5 6 7 8	6 7 8 9	.9 10 11	- 13 14			
6	f pt	От 1 до 3,5 Св. 3,5 до 6,3 > 6,3 × 10 > 10 > 16	±10 ±13 ±14 ±17	±11 ±14 ±16 ±18	±13 ±14 ±18 ±20	±16 ±18 ±20	±20 ±22	 ±25		
	í.	От 1 до 3,5 Св. 3,5 до 6,3 > 6,3 > 10 > 10 > 16	5 6 8 10	7 8 9 11	9 10 11 13	13 14 16		28		
7	fpt	Or 1 до 3,5 Св. 3,5 до 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25	±14 ±18 ±20 ±24 ±30	±16 ±20 ±22 ±25 ±32	±18 ±20 ±25 ±28 ±36	±22 ±25 ±28 ±36	±28 ±32 ±40	±32 ±36 ±40		
	fa	От 1 до 3,5 Св. 3,5 до 6,3 > 6,3 > 10 > 10 > 16 > 16 > 25	8 9 11 15 20	9 11 13 17 22	12 14 16 20 25	19 21 25 30	28 32 38	- - 42 48		
8	l ^{b1}	От 1 до 3,5 Св. 3,5 до 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40 » 40 » 55	±20 ±25 ±28 ±34 ±42	#22 #28 #32 #36 #45 #60	#25 #28 #36 #40 #63 #85	±32 ±36 ±40 ±50 ±63 ±85	±40 ±45 ±56 ±71 ±90	 ±50 ±56 ±71 ±95		

Продолжение табл. 7

	t .			nout to	лительня		AME TOO	
Степень точьостя	Обозначение	Средний нормальный модуль га _щ , мм	Zo 125	C9, 125 20 400	Cs. 400	Cp. 600 до 1600	Cs. 1600 da	Ca. 2500 no 4000
8	fc	Oτ 1 до 3,5 Cв. 3,5 до 6,3 * 6,3 * 10 * 10 * 16 * 16 * 25 * 25 * 40 * 40 * 55	10 13 17 22 30	13 15 19 25 34 48	18 20 24 30 38 53	28 32 38 48 60 80	 45 50 56 71 90	67 75 90 105
9	ĺpt	Ot 1 go 3,5 Cs. 3,5 go 6,3 > 6,3 > 10 > 10 > 16 > 16 > 25 > 25 > 40 > 40 > 55	±28 ±36 ±40 ±48 ±60	±32 ±40 ±45 ±50 ±63 ±85	±36 ±40 ±50 ±56 ±71 ±90 ±112	±45 ±50 ±56 ±71 ±90 ±125	±56 ±63 ±80 ±100 ±125	±71 ±80 ±100 ±140
	f^{α}_{iY0}	От і до 3,5 Св. 3,5 до 6,3 » 6,3 » 10 » 10 » 16	53 60 71 85	60 67 80 90	67 75 85 100	80 90 110	100 120	 125
10	fpt	Or ! go 3,5 Cs. 3,5 go 6,3 > 6,3 > 10 > 10 > 16 > 16 > 25 > 25 > 40 > 40 > 55	±40 ±50 ±56 ±67 ±85	±45 ±56 ±63 ±71 ±90 ±120	±50 ±56 ±71 ±80 ±100 ±125 ±160	±63 ±71 ±80 ±100 ±125 ±160	±80 ±90 ±112 ±140 ±180	±100 ±112 ±140 ±180
	{"'E0	От 1 до 3,5 Св. 3,5 до 6,3 » 6,3 » 10 » 10 » 16	67 75 90 105	75 80 100 120	80 90 105 130	105 120 140	130 150	160
11	fpr	От 1 до 3,5 Св. 3,5 до 6,3 » 6,3 » 10 » 10 » 16 » 16 » 25 » 25 » 40 » 40 » 55	±56 ±71 ±80 ±100 ±125		±140	±90 ±100 ±112 ±140 ±180 ±250	±125 ±160 ±200	±140 ±160 ±200

E	1		Cne	anni an	лительні	-6 2224	ern d e	
Степень точности	Обознавение	Среджий пормальный модуль м _ю , мм	До 125	CB, 126 An 400	CB. 400	Ch. 800 Ao 1600	C.s. 1600 an 2500	Co. 3500 Ao 4000
11	f ₁₂₀	Or 1. до 3,5 Св. 3,5 до 6.3 * 6,3 * 10 * 10 * 16	85 95 110 140	95 105 125 150	105 120 140 160	130 150 170	160 180	200
12	fpr	От 1 до 3.5 Св. 3,5 до 6,3 э 6,3 э 10 э 10 э 16 э 16 э 25 э 25 э 40 э 40 э 55	±80 ±100 ±112 ±130 ±170	± 125 ± 140	±160 ±200	±125 ±140 ±160 ±200 ±250	±160 ±180 ±224 ±280	±224 ±280
	frigo	От (до 3,5 Св. 3,5 до 6,3 » 6,3 » 10 » 10 » 16	100 120 140 170	120 130 150 190	130 150 170 200	160 180 210	200 240	250

Примечания:

1. Принятые обозначения:

 I_{pt} — предельные отклонения шага;

 $f_{\ell \Sigma^0}$ — допуск на колебавне измерительного межосевого угла на одвом зубе:

f. — допуск на погрешность обката зубщовой частоты:

 При установлении допуска на разность любых шагов f_{upt} в пределах зубчатого колеса взамен предельных отклонений шага его значение не должно превышать 1,6 [f_{pt}].

 Допуск f_(E0) на колебание измерительного межосевого угла на одном зубе подсчитывается для диаметра, равного полусумме средних делительных диаметров колеса и шестерии.

 Для зубчатых колес конических и гипондных передач с номинальным утлом профиля а, не равным 20° величины допусков ("тр. (табл. 7 и 1_{д.)} тобл. 8).

умножвются на отношение $\frac{\sin 20^{\circ}}{\sin \alpha}$.

Нормы плавности работы (показатель ±1лмг)

		1		$C^{\mathbf{R}^i}$ 49	1	111	1111	1111	11118
	98 1		őt og,	C# 50		111	1111	1111	11112
	ARTING BESTINE			от од		111	1111	1111	11118
	1500			6≱ .αD		111	1118	1118	11135
	800 an		Çt ou	C# So		111	1119	1118	11188
	Cetallie	Ħ		02 off,		118	1188	1 1 88 8	11888
	্যান্ত কা	rp4.2yes		69 .mD		25 25	8888	2883	55868
	8	eca o		C≠ 50		88.88 88.88	250 250 250 250 250 250 250 250 250 250	240 240 150	25.55
9	700	o monec		Of off.		210 110 71	8855E	30.230	128863
- Commence of the	ло 400	Sybuatoro		GF 49	NXN	588	\$% 8 53	8882	원연목중심
. 1			51 OE	CF '80	E W	848	110 67 30	200 105 21 50 50 105	282 158 158 158
Market Contra	10 No. 60	вонуса		वह श्री	#!	**	මිෂීසිද	5558 8	28288
Chemina	ac 200	делигельного		GB 45		15 8 5,0	21 8,5 5,6	22238	88577
1	墨	REALF	59 OB	C≠ 30		38 13 13	조망성과	8882	824528
	Casattee	Y roat.		æ o∏		5885	8822	8888	222368
-	Xo 100			8F :80		8,8,8 8,8 4,6	0.00 0.00 0.00 0.00	17 9,5 6,0 4,5	¥5.831
	常		di op	02 (0)		9,0 9,0 5,6	25 14 9,0 7,1	425E	\$855°
	Самите			es da		19.0 10.5 6,7	85==8.	28 13 13	18828
l	05			85-40		2.0	3,0	0.86	7,1
	До В		db or.	(CB, 280)		2.0 8.0	6.44 10.64	6.7	7.6.111
ı	-			02 o,fl,		3.26	50.0	±6.	8=111
						0.50 0.30 0.30 0.30 0.30 0.30 0.30 0.30	2525	2000 1000 1000 1000	8228
1			annik Liben Mary			25.4	40	육왕 * *	55,44
			Срединй нормальный олугь п.д. в			- # @ - # @	755	10.35	-2500 B
			o			ತತೆ *	55°°	ర్వే 🔭	రేకే ^గ ి.
-			03568	hou suar	C160	म	es.	0	r-

90
1064
MERLE
Тродол

.			gp 18	o 1	1	111188811	1111588	1111			
Ta6.4. 8	e 1600		d⊅ οπ, β≤ .a	5		11115665	11050	1111			
	Course 1600		02.0	п	Ì	1111858	1111888	1111			
Negation.	40 1500		- 45 . 45 . 6	0		1118888	170 170 140	1118			
Продолжение	8		dt og 02 .g	5		11188888	1115558	1118			
	900 Caume	Ŧ	02.0	T		750 750 340 280	1500000	1 188			
	ao 860 (Hodgeda	₫Þ. æ	c		88888888	288 288 288 288 288 288 288 288 288 288	250 250 180 180			
2	육	100 195	99 08 08 49	o		8888888	000 000 000 000 000 000 000 000 000 00	050 050 04 050			
are R.		колеса	02.0	T		160 280 280 160 140	55588885	21 710 200 200 200			
расстоявие	ALC 400	зубчатого	96 7	ъ	is H S	5884882	240 130 85 85 88 88 88 88	35 05 05 05 05 05 05 05 05 05 05 05 05 05			
		yea ay6	. 20 YO 42	9	t A.M.	25 20 20 20 20 20 20 20 20 20 20 20 20 20	8892233	8488 8488 8488			
Konychoe	Cana			E S	E S	65 0	T	Ŧì	480 250 170 120 45 67	95.05 105	22222
Chedities	30 200	делительного	Sh. e	0		55888351	ବିଷ୍ଟ% ଅଷ୍ଟ ।	중홍않송			
ľ	3	ge.dare	64 on 62 .e	О		変 る288881	28 26 26 26 27 28 27 28 21	95 190 190 190 190			
	Cnume	S.roa	02.0	T		200 120 120 120 130 130 130 130 130 130 130 130 130 13	85588888 19588888	245 240 150 100			
	(0 H(0)		Qt 78	0		월 1 전 2 전 3 전 3 전 3 전 3 전 3 전 3 전 3 전 3 전 3	8872111	28848			
İ	部 田 当		Ö⊪ 0⊈ 0∑ .a	о		8488111	ଞ୍ଛନ୍ଥ।।।	5834			
	Casarage		02.0	T		88228111	를 22 8 8 1 1 1	8848			
	8		F 42	2		9,5	4.0	8=11			
- [थ		₹# og 02 .e	c		48	25-1111	8811			
	"		05 0	T		168	\$없	28명			
			Средний Вормальный молуль из д. мм			1 70 3.5 3.5 10 5.3 6.3 * 10 10 * 16 16 * 25 40 * 55	1 35 40 6,3 6,3 × 10 10 × 16 16 × 25 25 × 40 40 × 55	3.5 70 6.3 6.3 2 10 10 2 16			
_			** Q			65^^^	53 * * * *	ნშ^^			
(P 20dillocut	нава	C14		a)	<u>e</u>			

Продолжение пабл. 8

римечаныя: Принятое обозначение;

(дм. — предельные осевые смещения зубчатого венца. Вслачаны 1дм относятся к немодифицированным передачам.

Нормы плавности работы (показатель free)

Степень точ-		Частота ѝ циклической погрешности за оборот зубъятого колеся								
ности по по- навателю навачости работы (_{2.20})	Спедиції пормаль- ный модуль т _а мм	2,0 [6	Св. 16 до 32	Св. 32 до 63	Ca. 63 40 125	Cas. 125 apr 250	Св. 250 до 500	Св. 500		
					MKM					
4	От 1 до 3,5	4,5	5	5	5.3	5,6	6,3	7,1		
	Св. 3,5 до 6,3	5.6	5,6	6	6.7	7,1	8	9		
	Св. 6,3 до 10	6,7	7,1	7,1	8	8,5	9	11		
5	От 1 до 3,5 Св. 3,5 до 6,3 Св. 6,3 до 10 Св. 10 до 16	6.7 8 10 12	$7.1 \\ 8.5 \\ 11 \\ 13$	7,5 9 11 14	8 10 12 15	8.5 11 13 16	9.5 12 15 18	11 14 17 21		
6	От ! до 3,5	10	10	11	12	13	14	16		
	Св. 3,5 до 6,3	12	13	14	15	16	18	21		
	Св. 6,3 до 10	14	16	17	18	19	22	25		
	Св. 10 до 16	18	19	20	22	24	28	32		
Ť	От 1 до 3,5	15	16	17	18	19	21	24		
	Св. 3,5 до 6,3	18	19	20	22	24	28	30		
	Св. 6,3 до 10	22	24	24	26	30	34	38		
	Св. 10 до 16	28	28	30	34	36	42	48		
8 .	От 1 до 3,5	22	24	24	25	28	30	34		
	Св. 3,5 до 6,3	28	28	30	32	34	40	45		
	Св. 6.3 до 10	32	34	36	38	42	48	56		
	Св. 10 до 16	40	42	45	48	53	60	71		

Примечания:

Прииятое обозначение:

1. то топуск на шиклическую погрешность зубщовой частоты в передаче. 2. При контроле передачи частота к принимается равной г числу зубыев колеса.

Значения 1_{гго} в табл. 9 даны для передач с эффективным коэффициентом осеного перекрытия ε₈ε ≤ 0,45.

При в_в >0,45 допуск на цинлическую погрешность зубщовой частоты в передаче принимается:

при г_в, св. 0,45 до 0,58 равным 0,6 f_{зго};

еβ св. 0,58 до 0,67 равным 0,4 f 200;

е_{ве} св. 0.67 равным 0,3 f₂₁₀,

гле f220 — значения по табл. 9.

Соотношение между эффективным ϵ_{β^*} и номинальным ϵ_{β} коэффициентами осевого перекрытия, зависящее от степени точности передачи по нормам контакта, определяется по нижеследующим зависимостям;

Стещень точности 4—5 $\epsilon_{\beta r} = 0.7 \epsilon_{\beta}$

$$\nu$$
 ν 8 $\epsilon_{\beta r} = 0.5 \epsilon_{\beta}$

Нормы плавности работы (показатели Ізак Или Ізак).

Сведняй делительный дазметр и, мм	До 125 Свыше 125 Свыше 400 Свыше 300 Свыше 1900 до 2500 Свыше 3300 до 6500 до 1600	Средний кормидений модуль т _и , ми	6.0 og 1 6.0 og 1 6.0 og 1 6.0 og 1 6.0 og 1 6.0 og 1 6.0 og 1 6.0 og 1	Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca.	I SA HOM I SAN MEM	2 A0 4 4.5 5.3 6.3 7.1 8.5 9.0 9.0 11 10.5 12 11 13 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	2 AD 4 7,1 8,5 10,0 11 13,0 14 14,0 18 16 19 18 21 15 16 3,8 4,5 5,0 6,0 7,1 8,0 10,5 10,5 10,5 10,5 10,5 10,5 10,5 10
	Cacrora as obosor sydwaroro solecu (ann seperatu ac obosor solecu)					20 * * * * *	\$ 0 m m m m m m m m m m m m m m m m m m
		Ha.	PORCHOL 9	наца	40	च	1/2

2
7064
ALCOURAGE.
000g

700A. 10	2500 до 4000		CP.		7,7 8 9 1 1 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	88 88 88 82 22 22 23 23 23 23 23 23 23 23 23 23 23		
n poodweene z	Contine 26		E,B OR I TO		22 22 20 27 60 37 60 60 70 60 70 60 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70	45 22 25 19 13 13		
0041	10 ato 2500	mar mar	Ca. 40 10		23 25 12 6,7 7,5 6,7	45 26 20 44 51 51		
etp d. ww	Свыше 1600 до		Ė	Ė	Ė	6,8 on 1 TO		8241-er. 627-63
В днаметр	выше 500 до 1600	й модуль	C# 6.3 Ao 10	HIM CAS	22 22 25 25 26,7 26,3 6,3	2 8 8 8 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6		
Делительный	Chume ao 16	пормаланцов	6,8 at 1 to	NAME OF	27 50 8 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	36 26 20 16 13 10 8,5		
рецияй дел	Casaure 400 ao 800	Средний вод	C8. 6.3 go 10	47	ಜಿಗ್ಟರ್ ನಿರ್ಮಾಧನಾಗು ನಿರ್ಮಂತರ	36 26 19 10 10 8,5		
Chec	Свып	O Con	ë,ë opt 1,≂O		22 - 0 - 0 2 2 4 0 - 0 2 0 8	32 24 18 14 11 10 8,5 8,0		
	60 100 100		ers no 10 Cw		850 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0	28 20 16 12 10 8,0 7,5 6,7		
	Свыше до 6		6.8 og 1 vO		8 - 8 9 4 4 8 8 5 6 8 5 4 8 8 8	25 18 13 10 10 9,0 7,5 6,7 6,0		
	. 55		CE. 20 10		බිල උදු අහදා යුදු න්—බිල්න අම්බ	21 15 11 11 7,1 6,0 5,3 5,3		
	До 125		S.B. OR I TO		- 80.4.8.8.8.9.9.9. 0.8.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.	13 13 10 8,0 6,0 6,0 4,5 4,5		
		ofopot	aum neca)		-** # # # # # # # # # # # # # # # # # #	8 116 125 250 500		
		Mactora as o sydestone as	а оборот колеса)		250 * * 500 500 500 500 500 500 500 500 5	2 4 40 16 3 125 3 250 3		
		Hactre syde	33.06		්ට් ^^^^	55 * * * * * * *		
		815	ORNOL SERVICE	40 C	φ	۲.		

2
raba.
PASSENSE.
N POOR

100	2500 no 4000		62 5,3 ap 19		528888555	
	Сристе 3		8.8 ox 1 rO		2522257777	
	6 go 2500		od og 6,8		52222222	
10 d. un	Cessme 1008	Mar Age	E,8 02 1 TO		848287575	
eft Anomery	Courage 500 Ao 1600	R MONTAN	01 og 5,8	SAC MEN	\$422255545	
делительний	Consu	нормальный	8.8 olt 1 TO	HAR	28822222	
редний де.	Caterate 400 20 800	Средика но	C#.	₹,	1222122882	
Z.	Chra	ð	Cpe	£,8 on 1 ±0		588885555
	Свытье 125° до 406		Ca. Ca. 6.8		\$887747558 8, 8, 8,	
	Chiatin			5,8 on 1 rO		සීසිබිබිවිවිම ආස වෙති
	125		Ca. 6,3 до 19		28 20 27,5 2,5 5,7 6,7	
	До 125		Ce or 1 TO		නික්විට කුදු ශූශූශූ නික්විට කුදු ශූශූශූශූ නිශ්ද ලබා	
		Appear	PCS)		8 32 32 50 500 500	
		Hactora sa oboport sydestron iconeca	лля передачи оборот колесь)		25 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
		4acros sydra	11 060		68*****	
		8138	PHAGE Sheme	12	20	

Прямечание, Приватые обозначения: бы — допуск на виклическую потрешность зубчатого колеса; бы — допуск на циклическую потрешность передачи,

Таблина 11 Нормы контакта зубьев в передаче $(nokasarean f_{ar})$

		Cast	вее конусно	The second second second	n D tool					
Степснь точности	55 €	Cis. 50 av 100	7a. 190 до 200	Çn. 200 ga 400	Cs. 400 Ao 800	in, suite ayo fuser	Ca. 1930			
	±t _a , wen									
4	10	12	13	!5	18	25	32			
5	10	12	15	18	25	-36	45			
6	12	15	18	25	30	40	56			
7	18	20	25	30	36	50	67			
8	28	30	36	45	60	85	100			
9	36	45	55	75	90	130	160			
10	67	75	90	120	150	200	280			
11	105	120	150	190	250	300	420			
12	180	200	240	300	360	450	63 9			

Примечания:

±f_q — предельные отклонения межосевого расстояния,

Табличные значения 1 установлены для передач без продольной модификации вубьев.

Для передач с продольной модификацией величина (в устанавливается независимо от значений, указанных в табл. 11. Эти значения могут быть вычислены по формуле, приведенной в справочном приложении 3.

3. Для гипондных передач выбор производится по среднему конусному расстоянию колеса передачи.

Таблипа 12.

Нормы контакта зубьев в передаче (показатели F_{str} и F_{shr} и относительные размеры суммарного пятна контакта)

	По для	не зубьев	По высоте зубьев			
NT.	С продольной модификацией	Немодифициро- ванных	С профильной модификацией	Немодифициро- ванных		
CYEBERS TOWIOCTR	<i>Р_{ыі}</i> (в процентах от дляны зуба)	Относительный раз- мер суммарного вятна контакта (а процентах длины зуба) не менее	Р _{зф} (в процентах от средней глу- бины захода)	Относительный раз- мер суммариого лятна контакта (в процентах от сред- ней глубаны заходы) не менее		
4-5	±10	70	±10	75		
67	±10	60	.± 10	65		
8-9	± 15	50	±15	55		
10-12	± 15	40	± 15	45		

Примечавие. Принятые обозначения:

Ры — предельные отклюнения относительных размеров суммарного пятиа контакта по длине (для модяфицированных зубьев).

F_{**} — предельные отклонения относительных размеров суммарного пятна контакта по высоте (для модифицированных зубьев).

3. НОРМЫ БОКОВОГО ЗАЗОРА

- 3.1, Величины гарантированного бокового зазора j_{min} для передач с различными видами сопряжений устанавливаются независимо от степеней точности и их комбинирования по табл. 13.
- 3.2. Гарантированный боковой зазор в передаче обеспечивается выбором предельного отклонения межосевого угла передачи (Е_Σ), наименьшего отклонения средней постоянной хорды зубьев шестерни и колеса (Е_{З:s}) и допусков на них. В справочном приложении 4 приводятся значения указанных показателей.
- 3.3. Допуск на боковой зазор T_{jn} настоящим стандартом не регламентируется.

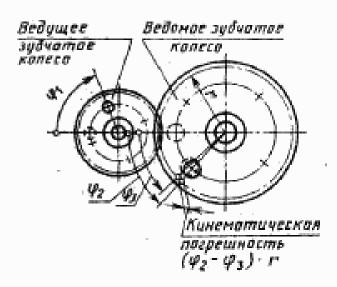
 \cong Таблица

Нориы бокового зазора (nokasatelle jnmin)

	ļ		CP 52	B	051458 0100 0100 0100 0100 0100 0100 0100 01							
	3, 1800		Ca. 15 go 25		220000							
	Ċ		до 12		70 170 175 280 440							
	1600		C# 32	Į	o858848							
	800 до		CF 12 TO 32		200 2 200 2 200 2 200 2							
	3	195			To 15		22.00 E20 22.00 E20					
	800				3	C≥ 32		440 440 522 522 522 522 522 522 522 522 522 52				
_	400 go	градусы	Ca. 15 po 25		220 230 360 24							
3. 3.	сстоявие R, до 400 Св. пестерия , В,	47	či ofi.		0000000							
зане		пестерия,				- 10				C# 39		
0,000			CB: 15 ato 25		46 52 72 81 72 130 115 130 290 320							
	Ca. 200	конгуса	61 off,	MXM								
конусное	_				0884888							
	90 Se	NENION .	Cb. 25		-488988 58988							
Оредине	90	185	CB, 15 go 25		0% 2 255							
ľ	đ	Угол. делительного	রা ০ন্ন		<u> ୧୯୯୯ର ଅନ୍ତି</u>							
	001	ž.	CF. 35		082488							
	50 Ac		Cs 15 20 25		e88888							
	đ		či off,		0±88325							
		1	Cs. 25		-888 8 5							
	До 60		Ca. 15 go 25		0 <u>2 8 8 8 8 8</u>							
			র। ০ার্		o≈¤%%8							
			финфьенес	90	Jamia							
			г сопћаженна	ΉЯ	±acom⊀							

Примечания

 /- п. п. п. п. гарантированный боковой зазор.
 /- Для ортогональных передач /- п. п. определяют вепосредственно на таба. 13 по значениям R; для неортогональных передач /пап определяют по расчетной величине


$$R' = \frac{R}{2}$$
 (sin $2b_1 + \sin 2b_2$),

гле 5, и 62— утлы делительных конусов соответственно шестерии и колеса. З. Для гипоплимх передач выбор јеме проводится по среднему конусному расстоянию колеса.

ПРИЛОЖЕНИЕ 1 Справочное

ПОЯСНЕНИЯ ТЕРМИНОВ, ОБОЗНАЧЕНИЯ И ОПРЕДЕЛЕНИЯ

Кинематическая погрещность передачи
 Разность между действительным и номинальным (расчетным) углами поворота ведомого зубчатого колеса передачи. Выражается в линейных величинах
длиной дуги его средней делительной окружности (черт. 1)

$$\psi_0 = \psi_1 - \frac{z_1}{z_2}$$

где z_1 — число зубъев ведущего зубчатого волеса:

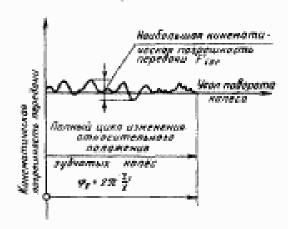
г₂ — число зубъев веломого зубчатого колеса:

 фі — действительный угол поворота велущего зубчатого колеса;

 ф2 — действительный угол поворота ведомого эубчатого колеса;

 фа — номинальный угол поворота ведомого зубчатого колеса.

Черт. 1


2. Нанбольшая кинематическая погрешность передачи F'40-

Наибольшая алгебранческая разность значений кинематической погрешности передачи за полный цикл изменения относительного положения зубчатых колес (т. е. в пределах числа оборотов колеса, равного частному от деления числа зубьев шестерии на общий наибольший делитель чисел зубьев обоих зубчатых колес передачи).

Допуск на кинематическую погрешность передачи F' го.

4. Кинематическая погрешность зубчатого колеся
Разность между действительным и номинальным (расчетным) углами пово-

рота зубчатого колеса на его рабочей оси, ведомого точным (идеальным) зубчатым колесом при точном взаимном положении осей вращения этих колес.

 ф2 — угол поворота зубчатого колеса;
 х — общий наибольший делитель чисел зубьев
 х₁ и х₂ соответственно шестерии и колеса,

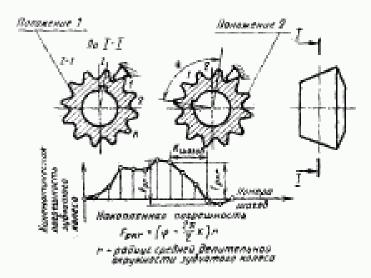
Черт. 2

Выражается в ливейных величинах длиной дуги средней делительной окружности.

Примечание. Под рабочей осью зубчатого колеса понимается ось, вокруг которой оно вращается в передаче.

5. Наибольшая кинематическая погрешность зубчатого колеса F'er.

Наибольшая алгебранческая разность значений кинематической посрешности зубчатого колеса в пределах его полного оборога, (черт. 3).



Черт. З

- 6. Допуск на кинематическую погрешность зубчатого колеса F':
- 7. Наколдениая погрешность к шагов Рикс

Кинематическая потрешность зубчатого колеса дри номинальном его повороте на k целых утловых шагов, k — целое число в пределах от 2 до z/2 (см. примечание 2 к табл. 6) (черт. 4)

Черт. 4

8. Допуск на накопленную погрешность k шагов \mathbf{F}_{ph}

9. Накопленная погрешность щага по зубчатому кожесу F_{P^+}

Наибольшая алгебранческая разность значений накопленных потрешностей, найденных для всех значений & в пределах от 2 до z/2.

- 10. Допуск на накопленную погрещность шага по зубчатому колесу Fp.
- 11. Внение зубчатого венца Fre

Наибольшая в пределах зубчатого колеса разность расстояний от его рабочей оси до элемента нормального исходного контура (одиночного зуба или впадины), наложенного на профили зубьев зубчатого колеса. Определяется в направлении, перпендикулярном образующей делительного конуса зубчатого колеса примерно на среднем конусном расстоянии.

- 12. Долуск на биение зубчатого вениа Fr
- 13. Погрешность обката Fcr

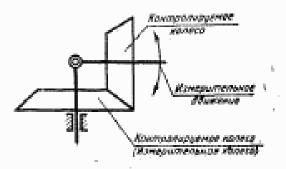
Составляющая кинематической погрешности зубчатого колеса, определяемая при вращении его на технологической оси и при исключении циклических потрешностей зубровой частоты и кратных ей более высоких частот.

Примечания: 1. Под технологической осью зубчатого колеса понимается ось, вокруг которой оно вращается в процессе окончательной механической обработки зубьев по каждой из их сторон.

 Погрешность обката может определяться как погрешность кинематической цепи деления зубообрабатывающего станка.

Допуск на погрешность обката F_c

 Колебание измерительного межосевого угла пары (измерительной пары);


за полный цикл F"_{(Ест}

(за полный оборот зубчатого колеса) (Р"(др)

на одном зубе $f''_{i_{\Sigma}\circ r}$ $(f''_{i_{\Sigma}r})$

Разность наибольшего и наименьшего измерительных межосевых углов за полный цикл (за оборот колеса) изменения относительного положения зубчатых колес (см. п. 2) цары (измерительной пары) при беззазорном их зацеплении или соответственно на один угловой шаг. Определяется как личейная величими на среднем конусном расстоянии (черт. 5).

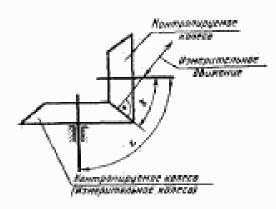
 Допуск на колебацие измерительного межосевого угла пары (измерительной пары);

Черт. 5

за полиый цикл Р"тко

(за оборот зубчатого колеса) (F''_{ix})

на одном зубе ("tro (f"tr)


Колебавне относительного положения зубчатых колес пары (измерительной пары) по нормали:

за полиый цекл F"_{inor}

(за оборот зубчатого колеса) (F"int)

на одном зубе $i^{\prime\prime}_{inor}$ $(i^{\prime\prime}_{inr})$.

Наибольшая разность положений одного из элементов пары (измерительной пары) относительно другого в направлении, перпендикуляриом плоскости, про-ходящей через общую образующую начальных конусов и касательную к нам (черт. 6)

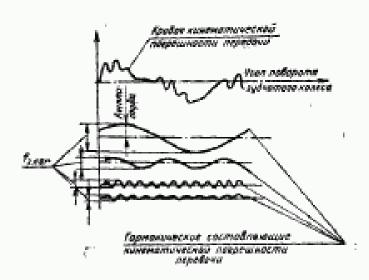
Черт. 6

 Допуск на колебание относительного положения зубчатых колес пары (измерительной пары) по нормали;

за полный цикл F''_{ino}

(оборот аубчатого колеса) (F"(n)

на одном зубе $f''_{(n)}$ ($f''_{(n)}$)


19. Колебание бокового зазора в передаче Р_{изг}

Разность между наибольшим и наименьшим боковыми зазорами в передаче за полный ижил изменения относительного положения зубчатых колес (см. п. 2). 20, Допуск на колебание бокового зазора в передаче F_{vj}

21. Циклическая погрешность передачи fabr

Удвоенная амилитуда гармонической составляющей кинематической погрешвости передачи (черт. 7)

Hept. 7

- 22. Допуск на пиклическую погрешность передачи free
- 23. Циклическая погрешность зубцовой частоты в передаче f_{ист}

Циилическая погрешность в передаче с частотой повторения за оборот колеса, равной числу его зубьев.

- 24. Допуск на циклическую погрешность зубцовой частоты в передаче і гло-
- 25. Циклическая погрешность зубчатого колеса fra-

Удвоенная амплитуда гармонической составляющей кинематической погрешности зубчатого колеса,

26. Допуск за циклическую погрешность зубчатого колеса fra

27. Погрешность обката зубцовой частоты for

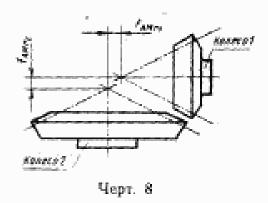
Составляющая кинематической погрешности зубчатого колеса зубцовой частоты и кратных ей более высоких частот, определяемая при вращении колесана технологической оси при исключении влияния погрешности производящей поверхности инструмента (см. п. 13).

Примечание. Погрешность обката зубцовой частоты может определяться как погрешность кинематической цепи обката зубообрабатывающего станка.

- Допуск на погрешность обката зубцовой частоты f_e.
- 29. Отклонение шага fer

Кинематическая погрешность зубчатого колеса при его повороте на одинноминальный угловой шаг.

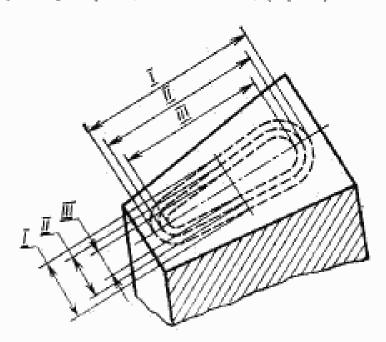
30. Предельные отклонения шага:


верхисе + f _{P t} нижиее — f _{P t}

31. Осевое смещенне зублатого венца famr.

Беличина смещения зубчатого венца вдоль его оси при монтаже передачиот положения, при котором характеристики зацепления (плавность работы, лятно контакта) являются наилучшими, установленными при обкаточном контроле пары (черт. 8)

32. Предельные осевые смещения вублатого вения фідм


33. Суммарное пятно контакта

Часть активной боковой яоверхности зуба зубчатого колеса, на которой располагаются следы прилегания зубьев парного зубчатого колеса в собранной передаче после вращения под нагрузкой, устанавливаемой конструктором.

Примечание. Определяются относительные размеры суммарного питна контакта в процентах: по длине зуба — отношение расстояния между крайними точками следов прилегания к длине зуба; по высоте зуба — отношение средней высоты следов прилегания к средней высоте зуба соответствующей активной боковой поверхности.

34. Отклонения относительных размеров суммарного пятна контакта; по длине F_{abr} по высоте F_{abr}

Алгебранческая разность между действительным и номинальным относительными размерами суммарного пятна контакта (черт. 9)

1—наибольший предельный размер пятах контакта; 11—номинальный размер зятих контакта; 111—наименьший предельный размер пятна контакта

Hepr. 9

- Предельные отклонения относительных размеров суммарного пятна контакта;
 - по длиме ± F₄₁
 - по высоте ±F₄/₈
 - 36. Суммарная зона касания

Сумиарное пятно контакта, полученное при легком торможении ведомого зубчатого колеса пары, обеспечнающем непрерывное контактирование сопряженных зубьев на контрольно-обкатиом станке.

37. Предельные отклонения относительных размеров суммарной зоны ка-

сания:

до длине $\pm F'_{*}$

по высоте ± Р'.,

38. Отклонения межосевого угла передачи Ед-

Разность между действительным и номинальным межосевыми углами в передаче.

Определяется на среднем конусном расстоянии в линейных величинах.

Предельные отклонения межосевого угла передачи ± E₂

40. Отклонение межосевого расстояния far

Разность между действительным и номинальным межосевыми расстояниями в передаче.

Примечание, В конических вублатых передалах номинальное межосепое расстояние равно нулю.

- Предельные отклонения межосевого расстояния ±f₀
- 42. Гарантированный боковой зазор јашто

Наименьший предписанный боковой зазор.

Определяется на среднем конусном расстоянии.

- 43. Допуск на боковой завор Туп
- Наименьшее отклонение средней постоянной хорды зуба Е_{жев}

Наименьшее предлисанное уменьшение постоянной хорды зуба, осуществляемое с целью обеспечения в передаче гарантированного бокового зазора.

45. Допуск на среднюю постоянную корду зуба Т_{эс}

Разность предельных отклонений средней постоянной хорды зуба.

46. Наименьшее отклонение средней делительной толщины зуба по хорде E_{ex}^{∞}

Навыеньшее предписанное уменьшение средней делительной толщины зуба, осуществляемое с желью обеспечения в передаче гарантированного бокового зазора.

47. Допуск на среднюю делительную толщину зуба по хорде Т.:

Разность предельных отклонений средней делительной толщины зуба по хорде,

Номинальные относительные размеры суммарной зоны касания по длине и высоте зубьев и их предельные отклонения

	Передачи с локализованным контактом								
Стемень точ- вости	По длине : (в процентах от		По высоте зуба Р _{зћ} (в процентах от средней глубикы захода)						
	Номинальный размер	Предельные отклонения	Номинальный размер	Предельные откложения					
4—5	От 65 до 80	±10	От 75 до 90	±10					
67	. 60 . 75	±10	. 75 . 90	±10					
8—9	. 50 . 70	±15	. 70 . 85	± 15					
1012	. 40 . 65	±15	. 60 , 80	±15					

ПРИЛОЖЕНИЕ 3 Справочное

Зависимости предельных отклонений и допусков по нормам кинематической точности, плавности работы и контакта зубьев от геометрических параметров зубчатых колес

	P	p		F,		±1pt			
ь точности	F _p ≈ BV		A·m _n +. B=0		$A \cdot m_R + B$ $B = 0.4$		A m _B +BV d+C B=0,25A		
Crement B		c	A	С	À	c	A	С	
4 5 6 7 8 9 10 11 12	1,25 2,0 3,15 4,45 6,3 9,0 12,5 17,5 25,0	2,5 4,0 6,0 9,0 12,5 18,0 25,0 35,5 50,0	0,90 1,40 2,24 3,15 4,0 5,0 6,3 8,0 10,0	11,2 18,0 28,0 40,0 50,0 63,0 80,0 100,0 125,0	0,4 0,63 1,0 1,4 1,75 2,2 2,75 3,44 4,3	4,8 7,5 12,0 17,0 21,0 26,5 33,0 41,5 51,5	0,25 0,40 0,63 0,90 1,25 1,8 2,5 3,55 5,0	3,15 5,0 8,0 11,2 16,0 22,4 31,5 45,0 63,0	

Продолжение

		J	c		1,500			a	
Степань точности	(A·m _H +Bd+C)× ×0.84 B=0,0126A		3 AV d+Bd		A-mB.zC			AV 0,3R+C	
Степен	А	с	А	В	A	В	С	A	с
4 5 6 7 8 9 10 11 12	0,21 0,34 0,53 0,84 1,34 2,1 3,35 5,3	3,4 4,2 5,3 6,7 6,4 1,34 21,0 34,0 53,0	2,05 3,25 4,55 5,68	0,012 0,020 0,031 0,044 0,055 0,068 0,086 0,107 0,134	3,46 5,135	0,349 0,344 0,348	0,115 0,123 0,126 0,125 0,072 — —	0,94 1,20 1,5 1,87 3,0 4,75 7,5 12,0 19,0	4,7 6,0 7,5 9,45 15,0 24,0 37,5 60,0 94,5

$$F'_{i} = F_{p} + 1.15 f_{c}; F_{vj} = 1.36 F_{r}; F'_{iz0} = 1.96 F_{r}; f''_{iz0} = 1.96 f_{pi};$$

$$f_{AM} = \frac{R \cdot \cos b}{8 m_{n}} \cdot f_{pi}; f_{zk} = f_{zk0} = (k^{-0.6} + 0.13) F_{r};$$

 $j_{\text{Lmin}} = 0$ для сопряжения H, а для сопряжений E, D, C, B, A величина $j_{\text{Lmin}} = -117 \div 1111$ соответствению, где IT — величина допуска соответствующего квадитета, определяемая в зависимости от расчетной величины $A_{\text{QREY}} = R\sin 2\delta_1$, имитирующей межосевое расстоявие цилиадрической зубчатой передачи.

Примечания:

I. Принятые обозначения: d —средний делительный дваметр зубчатого колеса; m_n — средний нормальный модуль; z — число зубьев зубчатого колеса; L — длина дуги средней делительной окружности; R — среднее новусное расстояние; δ_1 — угол делительного конуса цвестерии; k — частота циклической погрешности ϵ_n за оборот зубчатого колеса.

 При расчете допусков значения d, m_n, L, R принимаются как средние арифметические, а значения частот (k) как средние геометрические в интервале (геометрические параметры в миллиметрах, допуски и предельные отклоне-

няя — в микрометрах).

 В табл. 5 стаидарта внесены меньшие из величин F_{*}, подсчитанных позависимостям 1 и 2 таблицы.

f_{zh} в f_{zh}, подечитаны для наждой степеви точности при условных зна-

чениях F_r , соответствующих соседней более гочной степени.

 Величины і₃ в табл. 11 стандарта даны для передач без продольной молификации зубьев. Для передач с продольной модификацией зубьев і₃ могут

быть подсчитаны по формуле: $f_{ij} = F_{ij} \cdot b \frac{\rho_{ij} - \rho_{ij}}{100 \, \rho_{ij}}$.

где F_{st} — по табл. 12 стандарта ϱ_1 и ϱ_2 — радвусы продольной кривизны сопряженных зубьев соответственно меньший и больший. Расчетные значения должны быть уменьшены до технологически достижимых и экономически оправдавных значений.

 Числовые значении допусков и предельных отклонений в стандарте округлены по рядам R20 и R40.

ПРИЛОЖЕНИЕ 4 Справочное

ПОКАЗАТЕЛИ, ОПРЕДЕЛЯЮЩИЕ ГАРАНТИРОВАННЫЙ БОКОВОЯ ЗАЗОР

- 1. Показателями, определяющими гарантированный боковой зазор, являются: предельные отклонения межосевого угла передачи E_{Σ} (табл. 2) наименьшее отклонение средней постоянной хорды зубьев шестерии и колеса $E_{\overline{SCS}}$ (табл. 3 и 4) допуски на них $T_{\overline{SCS}}$ (табл. 5).
- 2. Предусматриваются пять видов допусков на боковой зазор, назначаемых в зависимости от биения зубчатого венца и обозначаемых буквами а, b, c, d н h. Рекомендуемые сочетания указанных видов допусков на боковой зазор с видами сопряжений приведены в табл. 1.

				T:	ьблаг	t a 1
Вид сопряжения	A	В	С	D	E	н
Вид допуска на боковой зазор	a	ь	c	d		h

При выборе вида допуска на боковой зазор в сочетании с видом сопряжения, отличающимся от указанного в табл. 1, обозначение вида сопряжения передачи дополияется буквой, характеризующей вид допуска на боковой зазор. Обе буквы пишутся слитно.

 Допуск Т_{sc} в любых случаях не может устанавливаться меньше величин, соответствующих виду допуска на боковой зазор h по табл. 5.

 При индивидуальном комплектовании пар допускается принимать действительную толщину зуба одного из зубчатых колес передачи за воминальную. ¢ч 鳾 買 DE, 70 可

Предельные отклонения межосевого утла передачи Е

		-	92	.ea.		88	<u>₹8</u> 3	200
	Ca. 1000		SE OF SI	40.	-	88	383	88
	Ü		91	оД		悉	883	28
	999		şž	CB.		88	883	88
	900 ao H		SZ OR SI	40.		99	88	200 200 200 200 200 200 200 200 200 200
	ő.		gt	од		8	9 8	88
	8	градусы	92	CB.		£.	88	물器
R. N.	400 go 800	÷	da on di	aD.		83	45 1	980
расстояние В.	đ	шестерия	8.	1 оД		23	88	88
opd and	8		92	CF.	Ey, nen	26	68	88
Среднее конуслое	200 Ac 400	OX OXO	gg ótt gi	Ca.	#	25	88	84
реднее	6	делительного конуса	g	i oll,		10	ឌន	88
0	8	70A BR.	92	ÇW :		8	88	88
	00 ato	ž	32 on 21	CF.		12	84	<u> </u>
	Ğ.		9	: cД	1	27	28	88
	8		98	CP.		12	ដន	88
	50 20		es ou e	CP' 1		122	28	22
	Cp. 8		9	1 0Д		9	28	43
			5	CB. 2		24	62	28
	J.o 30		82 og 8	Ca. 1		2	98	2.8
	-		9	t off,		7.5	-	83
			нивржи	iuoo :	пна	H H	00	PA<

Примечания:

немают равным половиве / вычисленному в соответствии с указанием по п. 2 примечания к табл. 13 стандарта передач неортогольльных В табл. 2 приведены значения Ед для ортогональных передач. Для

несимметрячяныя (когда этому не препятствует конструкция узла, содержащего зубчатую передачу), бсэ изменения поля допуска на Для гапондных передач выбор Е_х производится по среднему конусному расстоянию колеса.
 Предельные отклонения межосевого угля Е_х могут назначаться односторонними или

равиым 20°, ведичина предельного откловения межосевого угла Ед опредслястся умножением табличимх значений на отноше 4. Для зубчятых колес конических в гипондных передач с номинальным углом профиля с, не MEXICOSDON YPOL

sin 20°

60
40
\equiv
88
FIG. 1
۹Ö.
67
\leftarrow

60			8			97	· CW		1	88	28	8	86				
6.3 H II			900 20 1000		St ou	05	CP		ı	8	8	8	99				
[-			Ca. é			œ	oll		-	22	33	8	8	_			
		N.N.	909	2		99	CF.		45	45	S	13.	60				
	Esce	76	600 go 8	, градусы	9) 01	30	CB.	r m	25	33	25	99	99				
	ы зуба		Cs. 6 KORYCS.	RORINGE		30	οЩ		36	00 00	0	100 00	95				
	и хорды	делитеациий	001	делительного		ęp	c*	Experi	8	8	뚕	98	9				
	постояннов		Cpeaning av	8	8		gt old	30	cs.		88.	83	98	89	9		
		Cpi			30	oll,		83	33	æ	×	\$					
	е среднен				Ch 45		83	33	38	8							
	отклонение		Ao 126					39- on	65,	cer		ន	83	88	28		
			7			100	οΠ		.8	81	23	28	J				
1	панисиышее	Оредний мормальний модуль п.д. ми							Or 1 go 3,5	Cs. 3,5 . 6,3	6,3 , 10	. 10 . 16	. 16				
		-4	D L D	on	итэонь	04. 1	HODO BT:	AD.			7						
					RHRAM	a do	rea 'u	Вж			Ξ	h					

Примечания:

1. Для определения величин \mathbf{E}_{ses}^- при других степенях точности и видах сопряжений значения \mathbf{E}_{ses}^- , приведенные в табл. 3, умножаются на коэффициент K_1 , значения которого приведены в табл. 4.

2. При несимметричном допуске на межосевой угол (см. примечание 3 к табл. 2) значения \mathbf{E}_{xcx} , определяемые по табл. 3 и 4, должны быть скоррек-

тированы:

при увеличении верхнего отклонения межосевого угла путем уменьшения E_{ses}^{-} на величину (E_{ts}^{-} — E_{ts}^{-}) $tg\alpha$, где E_{ts}^{-} — намененное верхнее предельное отклонение межосевого угла E_{ts}^{-} — значение верхнего предельного отклонения межосевого угла по табл. 2 при уменьшения верхнего отклонения межосевого угла — путем увеличения E_{ses}^{-} на величину ($|E_{ts}|$ — $|E_{ts}|$) $tg\alpha$, где E_{tt} — измененное вижнее предельное отклонение межосевого угла.

3. Допускается сумму наименьших отклонений средней постоянной хорды

зуба пестерни и колеса относить к одному ва них.

4. При невозможности определить среднюю постоянную хорду зуба допускается значения наименьшего отклонения средней постоянной хорды зуба по табл. 3 и допуска на нее по табл. 5 относить к средней делительной толщине зуба по хорде с заменой обозначений \mathbf{E}_{ses} и \mathbf{T}_{se} соответственно на \mathbf{E}_{ses} и \mathbf{T}_{se} .

 Значения Е_{зсз}, для зубчатых колес со средним делительным диаметром свыше 1600 мм, боковой зазор которых регулируется при монтаже перслачи,

настоящим положением не устанавливаются.

6. При измерении толщины зубьев на внешнем торце зубчатых колес наиыеньшее отклонение средней постоянной хорды зуба $\mathbb{E}_{\overline{scs}}$ и допуск $\mathbb{T}_{\overline{sc}}$ на нее (см. табл. 5) увеличиваются в отношении $\frac{R_e}{R}$, где R_s — внешнее конусное расстояние.

Таблица 4 Коэффициенты для определения E_{ses}^- при степенях точности и видах сопряжений, отличающихся от 7-Н

	Қоэффициент <i>К</i> і									
Сопряжение		<u> </u>	CTEMENS TO	THOUTH NO R	ости по вормам плавности					
	46	7	8	.9	10	11	12			
	100	·			POWER PROPERTY.					
H E	0,9 1,45	1.6	_		_	_	_			
D	1.8	2,0	2,2	3.2	_ '					
C B	2,4 3,4	$\frac{2.7}{3.8}$	3,0 4.2	3,2 4,6	4.9	_	2004			
Ä	5,0	3.8 5,5	4,2 6,0	6,6	4,9 7,0	7,8	9.0			

Допуск на среднюю постоянную хорду зуба Т

N X

	069 og 000 .a⊃	450	200	150	320	1180	
ľ	CS. 400 Ao 509	380	480	909	22	920	
	CB- 330 No 400	300	83	85	000	750	
	OES 02 662 40	240	99	9	480	3	
	ОЗГ ой 008 гаО	200	250	돲	380	2003	
	Cs. 160 go 200	160	38	28	· 왕	900	
	OBI 0g 521 .aD	130	991	80	320	320	
1,3 F.	Ca. 100 Ao 125	011	8	170	330	88	
го венца	001 on 08 .aD	8	9	140	130	230	
аубчатого	08 gg 68 .aD	5	8	011	130	3	
Смение:	08 on 98 an	8	722	99	120	3	
Ē	06 op. 69 .p.C	20	53	98	3	8	
Допуск	Cs. 32 go 40	약	ß	20	83	011	
	Ca. 25 ao 32	.00	90	8	75	28	
	82 op, 82 JaD	R	53	8	垃	123	
	Cn. 16 ao 20	28	38	10	65	27	
	Ca. 12 go 16	26	얺	40	23	13	
	Cio ie ao iz	24	88	36	40 60	8	
	Ce. 6 20 10	83	23	芯	\$	22	
	8 017	-24	53	8	, 8	33	
	рай болуска на фоковой залор	E	7	Ų	£	m	