СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Методы определения магния

Издание официальное

63 7-97/231

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
Минск

Предисловие

 РАЗРАБОТАН ОАО «Всероссийский институт легких сплавов» (ОАО ВИЛС), Межгосударственным техническим комитетом по стандартизации МТК 297 «Материалы и полуфабрикаты из легких сплавов»

ВНЕСЕН Госстандартом России

 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол от 12 ноября 1998 г. № 14—98)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика Республика Армения Республика Беларусь Республика Казахстан Киргизская Республика Российская Федерация Республика Таджикистан Туркменистан Республика Узбекистан Украина	Азгосстандарт Армгосстандарт Госстандарт Беларуси Госстандарт Республики Казахстан Киргизстандарт Госстандарт России Таджикгосстандарт Главная государственная инспекция Туркменистана Узгосстандарт Госстандарт Госстандарт

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 21 апреля 1999 г. № 132 межгосударственный стандарт ГОСТ 11739.11—98 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2000 г.
 - 4 B3AMEH ΓΟCT 11739.11—82

© ИПК Издательство стандартов, 1999

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

ГОСТ 11739.11-98

Содержание

1.	Область применения
2	Нормативные ссылки
	Общие требования
4	Титриметрический метод определения магния
5	Атомно-абсорбционный метод определения магния

межгосударственный стандарт

СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Методы определения магния

Aluminium casting and wrought alloys. Methods for determination of magnesium

Дата введения 2000-01-01

1 Область применения

Настоящий стандарт устанавливает титриметрический (при массовой доле от 0,1 до 13,0 %) и атомно-абсорбционный (при массовой доле от 0,01 до 13,0 %) методы определения магния.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 61-75 Кислота уксусная. Технические условия

ГОСТ 804-93 Магний первичный в чушках. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3760-79 Аммиак водный. Технические условия

ГОСТ 3773—72 Аммоний хлористый. Технические условия

ГОСТ 4038—79 Никель (II) хлорид 6-водный. Технические условия

ГОСТ 4140—74 Стронций хлористый 6-водный. Технические условия

ГОСТ 4147—74 Железо (III) хлорид 6-водный. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4233—77 Натрий хлористый. Технические условия

ГОСТ 4328-77 Натрия гидроокись. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 5456-79. Гидроксиламина гидрохлорид. Технические условия

ГОСТ 5457-75 Ацетилен растворенный и газообразный технический. Технические условия

ГОСТ 8864—71 Натрия диэтилдитиокарбамат 3-водный. Технические условия

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 10652—73 Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты, 2-водная (трилон Б)

ГОСТ 10929-76 Водорода пероксид. Технические условия

ГОСТ 11069-74 Алюминий первичный. Марки

ГОСТ 18300-87 Спирт этиловый ректификованный технический

ГОСТ 25086—87 Цветные металлы и их сплавы. Общие требования к методам анализа

3 Общие требования

- Общие требования к методам анализа по ГОСТ 25086 с дополнением.
- За результат анализа принимают среднее арифметическое результатов двух параллельных определений.

Издание официальное

4 Титриметрический метод определения магния

4.1 Сущность метода

Метод основан на растворении пробы в растворе гидроокиси натрия или в растворе соляной кислоты, отделении магния от мешающих компонентов гидроокисью натрия и диэтилдитиокарбаматом натрия, титровании магния раствором трилона Б с эриохромом черным Т в качестве индикатора.

4.2 Аппаратура, реактивы и растворы

Шкаф сушильный с терморегулятором.

рН-метр.

Кислота соляная по ГОСТ 3118 плотностью 1,19 г/см³, растворы 1 : 1 и 1 : 99.

Кислота азотная по ГОСТ 4461 плотностью 1,35—1,40 г/см³ и раствор 2 : 3.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см3, раствор 1 : 3.

Кислота фтористоводородная по ГОСТ 10484.

Кислота уксусная по ГОСТ 61 плотностью 1,05 г/см3, раствор 1 : 1.

Натрия гидроокись по ГОСТ 4328, растворы 200 г/дм³ и 2 г/дм³.

Водорода пероксид по ГОСТ 10929.

Железо (ПП) клорид 6-водный по ГОСТ 4147, раствор 3 г/дм³: 0,5 г клорида железа (ПП) помещают в коническую колбу вместимостью 100 см³ и растворяют в 5 см³ раствора соляной кислоты 1: 1 и 10 см³ воды. Раствор переводят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

Натрий хлористый по ГОСТ 4233, раствор 100 г/дм³.

Аммоний хлористый по ГОСТ 3773, раствор 100 г/дм³.

Аммиак водный по ГОСТ 3760.

Буферный раствор с рН 10: 70 г хлористого аммония помещают в мерную колбу вместимостью 1000 см³ и растворяют в 200 см³ воды, приливают 570 см³ аммиака, доливают водой до метки и перемешивают. Раствор хранят в полиэтиленовой посуде.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Натрия диэтилдитиокарбамат по ГОСТ 8864, раствор 50 г/дм3.

Эриохром черный Т: 0,1 г эриохрома черного Т смешивают с 10 г хлористого натрия и тщательно растирают в фарфоровой ступке до получения однородной смеси. Допускается применение индикатора в виде раствора: 0,125 г эриохрома черного Т растворяют в 5 см³ буферного раствора с рН 10 и приливают 50 см³ этилового спирта. Раствор пригоден к использованию в течение двух недель.

Бумага индикаторная универсальная.

Индикатор конго красный: 0,1 г реагента растворяют в 100 см³ воды при слабом нагревании, раствор охлаждают и перемешивают.

Индикаторная бумага конго: фильтры средней плотности («белая лента») пропитывают раствором конго красного, высушивают в сушильном шкафу при температуре 100—105 °C, нарезают и хранят в бюксе. Бумага пригодна к применению в течение одного месяца.

Адсорбент (мацерированная бумага): 100 г измельченных фильтров («красная лента») помещают в стакан вместимостью 500 см³, приливают 300 см³ горячей воды и перемешивают мешалкой до получения однородной массы.

Магний по ГОСТ 804 марки Мг95.

Стандартные растворы магния.

Раствор А: 1 г магния помещают в коническую колбу вместимостью 500 см³, приливают 200 см³ воды и осторожно, порциями 30 см³ раствора соляной кислоты 1 : 1. После растворения раствор охлаждают, переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

1 см³ раствора А содержит 0,001 г магния.

Раствор Б: 100 см³ раствора А переносят в мерную колбу вместимостью 500 см³, приливают 6 см³ раствора соляной кислоты 1 : 1, доливают водой до метки и перемешивают.

1 см³ раствора Б содержит 0,0002 г магния.

Гидроксиламина гидрохлорид по ГОСТ 5456.

Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты, 2-водная (трилон Б) по ГОСТ 10652, раствор молярной концентрации 0,05 моль/дм³: 18,62 г трилона Б помещают в стакан вместимостью 800 см³, растворяют в 500 см³ раствора гидроокиси натрия 2 г/дм³, подкисляют

раствором уксусной кислоты до значения pH 6 по универсальной индикаторной бумаге. Раствор переводят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

Для установления массовой концентрации раствора трилона Б молярной концентрации 0,05 моль/дм³ по магнию в три конические колбы вместимостью 250 см³ каждая помещают по 15 см³ стандартного раствора А, приливают по 100 см³ раствора контрольного опыта, по 10 см³ раствора хлористого аммония, устанавливают рН 8—9 по универсальной индикаторной бумаге, добавляя аммиак. Растворы нагревают до температуры 40—60 °C, приливают по 10 см³ буферного раствора, добавляют по 0,1 г индикаторной смеси или 6—8 капель раствора индикатора эриохрома черного Т и титруют раствором трилона Б до перехода малиновой окраски растворов в синюю.

Трилон Б, раствор молярной концентрации 0,02 моль/дм³, готовят одним из ниже перечисленных способов.

7,45 г трилона Б помещают в стакан вместимостью 800 см³, растворяют в 500 см³ раствора гидроокиси натрия 2 г/дм³, подкисляют раствором уксусной кислоты до значения рН 6 по универсальной индикаторной бумаге. Раствор переводят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают. Допускается другой способ: 200 см³ раствора трилона Б молярной концентрации 0,05 моль/дм³ переносят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

Для установления массовой концентрации раствора трилона Б молярной концентрации 0,02 моль/дм³ по магнию в три конические колбы вместимостью 250 см³ каждая помещают по 10 см³ стандартного раствора Б, приливают по 100 см³ раствора контрольного опыта, по 10 см³ раствора хлористого аммония и далее поступают, как указано выше (установление массовой концентрации раствора трилона Б молярной концентрации 0,05 моль/дм³).

Массовую концентрацию раствора трилона Б по магнию T, г/см³, определяют с каждой партией проб и вычисляют по формуле

$$T = \frac{C V}{V_1},$$
 (1)

где C — массовая концентрация стандартного раствора магния, г/см³;

V — объем стандартного раствора магния, используемый для титрования, см³;

V₁ — объем раствора трилона Б,израсходованный на титрование, см³.

4.3 Проведение анализа

4.3.1 При массовой доле кремния менее 3 %

Навеску пробы массой в соответствии с таблицей 1 помещают в стакан вместимостью 400 см³, приливают 5—10 см³ воды и осторожно, малыми порциями приливают 30 см³ раствора гидроокиси натрия 200 г/дм³ (из расчета 6 г гидроокиси натрия на 1 г навески пробы).

Таблица 1

Массовая доля магния 🔅	Масса навески пробы,г	Объем. аликвотной частираствора, см ³	Молярная концентрация трилона Б, моль/дм ³	Масса навески пробы в аликвотной части раствора, г	Объем раствора гидроокиси натрия,см ³
От 0,1 до 0,5 включ. Св. 0,5 » 1,5 » • 1,5 » 3,5 » • 3,5 » 7,0 » • 7,0 » 13,0 »	2 2 1 1 0,5	200 100 100 50 .50	0,02 0,05 0,05 0,05 0,05 0,05	0,8 0,4 0,2 0,1	90 90 80 80 60

После прекращения бурной реакции раствор нагревают до растворения пробы, приливают 2—3 см³ пероксида водорода и кипятят 2—3 мин. Враствор приливают 200 см³ горячей воды, 5 см³ раствора хлорида железа (ПП),если массовая доля железа в сплаве менее 0,5 %,перемешивают и дают отстояться осадку в течение 20—30 мин.

4.3.2 При массовой доле кремния более 3 %

Навеску пробы массой в соответствии с таблицей 1 помещают в коническую колбу вместимостью 400 см³, приливают 5—10 см³ воды и осторожно, малыми порциями приливают 50 см³ раствора соляной кислоты 1 : 1. После прекращения бурной реакции раствор нагревают до растворения

пробы, приливают 10 см³ раствора азотной кислоты, нагревают, не доводя до кипения, до прекращения выделения бурых паров окислов азота и затем осторожно кипятят в течение 10 мин. Приливают горячую воду до 150 см³ и, если раствор непрозрачен или при наличии осадка, фильтруют его через фильтр средней плотности («белая лента») с адсорбентом в коническую колбу вместимостью 500 см³ (основной раствор). Затем фильтр промывают 8—10 раз горячим раствором соляной кислоты 1:99 порциями по 10—15 см³, собирая промывные воды в ту же колбу.

Фильтр с осадком помещают в платиновый тигель, высущивают, озоляют, не допуская воспламенения, и прокаливают при температуре 500—600 °C в течение 2—3 мин. После охлаждения в тигель добавляют десять капель серной кислоты, 10 см³ фтористоводородной кислоты и по каплям азотную кислоту (приблизительно 1 см³) до получения прозрачного раствора. Раствор выпаривают досуха, приливают к сухому остатку 10 см³ раствора соляной кислоты 1 : 1 и растворяют его при умеренном нагревании. После охлаждения раствор присоединяют к основному раствору в колбе (при необходимости фильтруют).

В раствор приливают 5 см³ раствора хлорида железа (111), если массовая доля железа в сплаве менее 0,5 %, и переливают его при непрерывном перемешивании в стакан вместимостью 600 см³, содержащий раствор гидроокиси натрия 200 г/дм³ в соответствии с таблицей 1. В раствор приливают 2—3 см³ пероксида водорода, кипятят в течение 10 мин и дают осадку отстояться в течение 20—30 мин.

4.3.3 Осадок, полученный по 4.3.1 и 4.3.2, отфильтровывают через фильтр средней плотности («белая лента»), промывают 4—5 раз горячим раствором гидроокиси натрия 2 г/дм³ и два раза водой.

Основную массу осадка смывают с фильтра струей горячей воды в колбу, в которой проводили растворение, а оставшийся осадок на фильтре растворяют в 30 см³ теплого раствора соляной кислоты 1:1 и 3 см³ пероксида водорода. Фильтр промывают горячей водой (до красной окраски бумаги конго, помещенной на край фильтра), собирая промывные воды в ту же колбу. Полученный раствор доводят до кипения и кипятят при слабом нагревании в течение 5 мин, объем раствора должен быть около 100 см³. В раствор помещают бумагу конго, приливают 15 см³ раствора хлористого аммония, охлаждают и устанавливают значение рН 3 раствором гидроокиси натрия 200 г/дм³ (сине-сиреневая окраска бумаги конго от одной капли раствора гидроокиси натрия), дополнительно контролируя универсальной индикаторной бумагой. Охлажденный раствор переводят в мерную колбу вместимостью 250 см³, приливают 80 см³ раствора диэтилдитиокарбамата натрия, доливают водой до метки и перемешивают, при этом значение рН составляет 4,5—5. Раствор фильтруют через сухой фильтр средней плотности («белая лента») в сухой стакан, отбрасывая первые порции фильтрата. При массовой доле марганца более 0,5 % раствор фильтруют через два сухих плотных фильтра («синяя лента»).

При температуре ниже 20 °C может появиться белесая муть диэтилдитиокарбамата натрия, которая в дальнейшем титрованию не мешает.

- 4.3.4 Аликвотную часть раствора в соответствии с таблицей 1 помещают в коническую колбу вместимостью 500—250 см³, доливают водой до 150 см³ и нагревают до температуры 40—60 °C. К раствору добавляют несколько кристаллов гидрохлорида гидроксиламина, 10 см³ буферного раствора и 0,1 г индикаторной смеси или 6—8 капель раствора индикатора. Раствор температурой 40—60 °C титруют в соответствии с таблицей 1 раствором трилона Б 0,05 или 0,02 моль/дм³ до перехода малиновой окраски раствора в синюю.
- 4.3.5 Раствор контрольного опыта готовят по 4.3.1—4.3.4 со всеми реактивами, применяемыми в холе анализа.
 - 4.4 Обработка результатов
 - 4.4.1 Массовую долю магния X, %, вычисляют по формуле

$$X = \frac{(V_1 - V_2)T}{m} \cdot 100, \tag{2}$$

где V_1 — объем раствора трилона Б, используемый для титрования раствора пробы, см³;

 V₂ — объем раствора трилона Б, используемый для титрования раствора контрольного опыта, см³;

Т — установленная массовая концентрация раствора трилона Б по магнию, г/см³;

м — масса навески пробы в аликвотной части раствора, г.

4.4.2 Расхождения результатов не должны превышать значений, указанных в таблице 2.

Таблица 2 В процентах

Массовая доля магняя	Абсолютное допускаемое расхождение		
	результатов паралдельных определений	результатов анализа	
От 0,10 до 0,30 включ, Св. 0,30 » 0,75 » » 0,75 » 1,50 » » 1,50 » 3,00 » » 3,00 » 6,00 »	0,02 0,03 0,05 0,07 0,10	0,03 0,05 0,07 0,10 0,15	

5 Атомно-абсорбционный метод определения магния

5.1 Сущность метода

Метод основан на растворении пробы в растворе соляной кислоты в присутствии пероксида водорода и измерении атомной абсорбции магния при длине волны 285,2 нм или менее чувствительной — 279,6 нм в пламени ацетилен-воздух в присутствии хлористого стронция или в пламени ацетилен-закись азота.

5.2 Аппаратура, реактивы и растворы

Спектрофотометр атомно-абсорбционный с источником излучения для магния.

Ацетилен по ГОСТ 5457.

Закись азота медицинская.

Кислота соляная по ГОСТ 3118 плотностью 1,19 г/см3, растворы 1 : 1 и 1 : 99.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см3.

Кислота азотная по ГОСТ 4461 плотностью 1,35—1,40 г/см³.

Кислота фтористоводородная по ГОСТ 10484.

Никель (II) хлорид 6-водный по Γ ОСТ 4038, раствор 2 г/дм³.

Водорода пероксид по ГОСТ 10929.

Стронций хлористый 6-водный по ГОСТ 4140, раствор 50 г/дм3:

76 г хлористого стронция помещают в стакаи вместимостью 600 см³, растворяют в 400 см³ воды, переводят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают. Хранят в полиэтиленовой посуде.

Алюминий по ГОСТ 11069 марки А999.

Растворы алюминия.

Раствор A 20 г/дм³: 10 г алюминия помещают в коническую колбу вместимостью 500 см³, приливают небольшими порциями 400 см³ раствора соляной кислоты 1 : 1 и растворяют при умеренном нагревании, добавляя 1 см³ раствора хлорида никеля (11).

Затем добавляют 3—5 капель пероксида водорода и кипятят раствор в течение 3—5 мин. Охлажденный раствор переносят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

Раствор Б 1 г/дм³: 50 см³ раствора А помещают в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

Магний по ГОСТ 804 марки Мг95.

Стандартные растворы магния.

Раствор А: 1 г магния помещают в коническую колбу вместимостью 250 см³, приливают 100 см³ воды, осторожно, небольшими порциями 30 см³ раствора соляной кислоты 1:1 и растворяют при умеренном нагревании. Охлажденный раствор переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемещивают.

1 см³ раствора содержит 0,001 г магния.

Раствор Б: 5 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают. Раствор готовят непосредственно перед применением.

- 1 см³ раствора содержит 0,00005 г магния.
- 5.3 Проведение анализа
- 5.3.1 Навеску пробы массой 0,5 г помещают в коническую колбу вместимостью 250 см³, приливают 30 см³ воды и осторожно, маленькими порциями 20 см³ раствора соляной кислоты 1 : 1. Колбу нагревают до растворения навески, добавляют 3—5 капель пероксида водорода и кипятят

раствор в течение 3-5 мин. Если раствор прозрачен, его переводят в мерные колбы в соответствии с таблицей 3.

5.3.2 Если остается осадок, указывающий на наличие кремния, раствор фильтруют в мерную колбу в соответствии с таблицей 3 через фильтр средней плотности («белая лента»), промывая осадок на фильтре 2—3 раза горячим раствором соляной кислоты 1 : 99 порциями по 10 см³ (основной раствор).

Таблица 3

Массовая доля магния,%	Вместимость мерной колбы,	Объем аликвотной части	Масса навески пробы
	см ³	раствора,см3	в аликвотной части раствора, г
От 0,01 до 0,05 включ.	250	Весь раствор	0,5
Св. 0,05 » 0,25 »	500	100	0,1
» 0,25 » 1,0 »	500	25	0,025
* 1,0 * 5,0 *	500	5	0,005
* 5,0 * 13,0 *	500	5	0,002

Фильтр с осадком помещают в платиновый тигель, высушивают, озоляют, не допуская воспламенения, и прокаливают при температуре 500—600 °C в течение 2—3 мин. После охлаждения в тигель добавляют пять капель серной кислоты, 5 см³ фтористоводородной кислоты и по каплям азотную кислоту (приблизительно 1 см³) до получения прозрачного раствора. Раствор выпаривают досуха, охлаждают, приливают к сухому остатку в тигле 10 см³ раствора соляной кислоты 1 : 1 и растворяют его при умеренном нагревании. После охлаждения раствор присоединяют к основному раствору (при необходимости предварительно фильтруют).

5.3.3 При массовой доле магния менее 0,05 %

К раствору в мерной колбе вместимостью 250 см³, полученному по 5.3.1 и 5.3.2, приливают 20 см³ раствора хлористого стронция (при использовании пламени ацетилен-воздух), доливают водой до метки и перемешивают.

5.3.4 При массовой доле магния более 0,05 %

Растворы в мерной колбе вместимостью 500 см³, полученные по 5.3.1 и 5.3.2, доливают водой до метки и перемешивают.

5.3.5 При массовой доле магния от 0,5 до 13,0 %

Аликвотную часть 200 см³ раствора, полученного по 5.3.4, помещают в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

- 5.3.6 Аликвотную часть раствора, полученного по 5.3.4 и 5.3.5, в соответствии с таблицей 3 помещают в мерную колбу вместимостью 250 см³, приливают 5 см³ раствора хлористого стронция (при использовании пламени ацетилен-воздух), доливают водой до метки и перемешивают.
- 5.3.7 Раствор контрольного опыта готовят по 5.3.1—5.3.6, используя вместо навески пробы навеску алюминия.
 - 5.3.8 Построение градуировочных графиков
 - 5.3.8.1 При массовой доле магния от 0,01 до 0,05 %

В семь мерных колб вместимостью 250 см^3 каждая приливают по 25 см^3 раствора алюминия A, по 20 см^3 раствора хлористого стронция (при использовании пламени ацетилен-воздух), в шесть из них отмеряют 0.5; 1.0; 2.0; 3.0; 4.0; 5.0 см^3 стандартного раствора 6, что соответствует 0.000025; 0.00005; 0.0001; 0.00015; 0.0002; 0.00025 0.00025 г магния.

5.3.8.2 При массовой доле магния свыше 0,05 до 0,25 %

В шесть мерных колб вместимостью 250 см³ каждая приливают по 5 см³ раствора алюминия А, по 5 см³ раствора хлористого стронция (при использовании пламени ацетилен-воздух), в пять из них отмеряют 1,0; 2,0; 3,0; 4,0; 5,0 см³ стандартного раствора Б, что соответствует 0,00005; 0,0001; 0,00015; 0,0002; 0,00025 г магния.

5.3.8.3 При массовой доле магния свыше 0,25 до 1,0 %

В шесть мерных колб вместимостью 250 см³ каждая приливают по 25 см³ раствора алюминия Б, по 5 см³ раствора хлористого стронция (при использовании пламени ацетилен-воздух), в пять из них отмеряют 1,0; 2,0; 3,0; 4,0; 5,0 см³ стандартного раствора Б, что соответствует 0,00005; 0,0001; 0,00015; 0,0002; 0,00025 г магния.

5.3.8.4 При массовой доле магния свыше 1,0 до 13,0 %

В шесть мерных колб вместимостью 250 см³ каждая приливают по 5 см³ раствора алюминия Б, по 5 см³ раствора хлористого стронция (при использовании пламени ацетилен-воздух), в пять из

них отмеряют 1,0; 2,0; 3,0; 4,0; 5,0 см³ стандартного раствора Б, что соответствует 0,00005; 0,0001; 0,00015; 0,0002; 0,00025 г магния.

- 5.3.8.5 Растворы по 5.3.8.1—5.3.8.4 доливают водой до метки и перемешивают.
- 5.3.9 Растворы пробы, контрольного опыта и растворы для построения градуировочного графика распыляют в пламя ацетилен-воздух или ацетилен-закись азота и измеряют атомную абсорбцию магния при длине волны 285,2 или 279,6 нм.

По полученным значениям атомной абсорбции и соответствующим им массовым концентрациям магния строят градуировочный график в координатах: «Значение атомной абсорбции массовая концентрация магния, г/см³». Раствор, в который не введен магний, служит раствором контрольного опыта при построении градуировочного графика.

Массовую концентрацию магния в растворе пробы и растворе контрольного опыта определяют по градуировочному графику.

- 5.4 Обработка результатов
- 5.4.1 Массовую долю магния X_1 , %, вычисляют по формуле

$$X_1 = \frac{(C_1 - C_2)V}{m} \cdot 100,$$
(3)

- где C₁ массовая концентрация магния в растворе пробы, найденная по градуировочному графику, г/см³;
 - C₂ массовая концентрация магния в растворе контрольного опыта, найденная по градуировочному графику, г/см³;
 - V объем раствора пробы, см³;
 - м масса навески пробы или масса навески пробы в аликвотной части раствора, г.
 - 5.4.2 Расхождения результатов не должны превышать значений, указанных в таблице 4.

Таблица 4

В процентах

Массовая доля магния	Абсолютное допускаемое расхождение		
	результатов параллельных определений	результатов анализа	
От 0,010 до 0,025 включ. Св. 0,025 ° 0,050 ° ° ° 0,050 ° ° 0,100 ° ° 0,100 ° ° 0,25 ° ° ° 0,50 ° ° ° ° 0,50 ° ° ° ° 1,00 ° ° ° 1,00 ° ° 2,50 ° ° ° 2,50 ° ° 5,00 ° ° ° 5,0 ° ° ° 13,0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0,003 0,005 0,010 0,02 0,05 0,08 0,10 0,15 0,2	0,005 0,007 0,015 0,03 0,07 0,10 0,15 0,20 0,3	

ГОСТ 11739.11-98

УДК 669.715.001.4: 006.354

MKC77.120.10

B59

ОКСТУ 1709

Ключевые слова: сплавы алюминиевые, методы определения магния, аппаратура, реактивы, растворы, анализ

Редактор Л.И. Назамова
Технический релактор В.И. Прусакова
Корректор В.С. Черкая
Компьютерная верстка Л.А. Круговой

Изд. лип. № 021007 от 10.08,95. Сдано в набор 07.05.99. Подписано в печать 09.06.99. Усл. печ. л. 1,40. Уч.-изд. л. 0,94. Тираж 408 экз. С 2986. Зак. 487.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Изаательство стандартов — тип. "Московский печатник", Москва, Лялин пер., 6. Плр № 080102

