межгосударственный стандарт

ЧУГУН ЛЕГИРОВАННЫЙ

Методы определения фосфора

ΓΟCT 2604.4—87

Alloy cast iron. Methods for determination of phosphorus

МКС 77.080.10 ОКСТУ 0809

Дата введения 01.01.88

Настоящий стандарт устанавливает фотометрические методы определения фосфора в легированных чугунах: при массовой доле фосфора от 0,02 до 0,25 % с применением восстановителя — аскорбиновой кислоты; при массовой доле фосфора от 0,25 до 2,0 % с применением восстановителя — ионов двухвалентного железа.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 28473.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД С ПРИМЕНЕНИЕМ ВОССТАНОВИТЕЛЯ — АСКОРБИНОВОЙ КИСЛОТЫ

(при массовой доле фосфора от 0,02 до 0,25 %)

2.1. Сущность метода

Метод основан на образовании фосфорномолибденовой гетерополикислоты и восстановлении ее до комплексного соединения, окрашенного в синий цвет, аскорбиновой кислотой в присутствии калия сурьмяновиннокислого (λ = 880 нм, оптимальная концентрация фосфора 3—40 мкг и 100 см³ фотометрируемого раствора). Влияние мышьяка устраняется восстановлением его до трехвалентного сернистокислым натрием.

2.2. Аппаратура и реактивы

Шкаф сушильный с температурой нагрева 105—110 °C.

Спектрофотометр или фотоэлектроколориметр.

Стеклоуглеродный тигель марки CУ-2000—1C № 4 или стеклоуглеродная чаша 550 СУ-2000—1C № 2.

Кислота азотная по ГОСТ 4461 и разбавленная 1:2.

Кислота соляная по ГОСТ 3118.

Кислота серная по ГОСТ 4204, разбавленная 1:1, и раствор с молярной концентрацией 3 моль/дм³: 84 см³ серной кислоты осторожно вливают при непрерывном перемешивании в 916 см³ волы

Калий марганцовокислый по ГОСТ 20490, раствор с массовой концентрацией 40 г/дм³.

Натрий сернистокислый 7-водный, раствор с массовой концентрацией 200 г/дм³ или натрий сернистокислый по ГОСТ 195, раствор с массовой концентрацией 100 г/дм³.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Аммоний молибденовокислый по ГОСТ 3765, перекристаллизованный: 250 г молибденовокислого аммония растворяют в 400 см³ воды при нагревании 70—80 °C, фильтруют через фильтр «синяя лента», охлаждают до комнатной температуры, приливают при перемешивании 300 см³ этилового спирта, дают осадку отстояться в течение 1 ч и отфильтровывают его на фильтр «белая лента».

69

Издание официальное

Перепечатка воспрещена

*

C. 2 FOCT 2604.4-87

помещенный в воронку Бюхнера, пользуясь водоструйным насосом. Осадок промывают два-три раза этиловым спиртом и высушивают на воздухе.

Серномолибдатный реактив: 7 г молибденовокислого аммония растворяют в 400 см³ воды, приливают 84 см³ серной кислоты, перемешивают, охлаждают, доливают водой до 1 дм³ и перемешивают.

Кислота фтористоводородная по ГОСТ 10484.

Кислота аскорбиновая, раствор с массовой концентрацией 40 г/дм³.

Калий сурьмяновиннокислый, раствор с массовой концентрацией 3 г/дм³.

Калий фосфорнокислый однозамещенный по ГОСТ 4198, дважды перекристаллизованный:

100 г реактива растворяют в 150 см³ воды при нагревании, выливают раствор тонкой струей в фарфоровую чашку, энергично перемешивая его стеклянной палочкой. Когда раствор охладится до комнатной температуры, чашку с кристаллами охлаждают в холодной проточной воде, изредка перемешивая его стеклянной палочкой. После охлаждения кристаллы отфильтровывают под вакуумом на пористую стеклянную пластину воронки и промывают два раза по 5 см³ ледяной водой. Осадок на фильтре растворяют в четыре—пять приемов в 80 см³ горячей воды и кристаллизацию повторяют. Кристаллы фосфорнокислого калия однозамещенного высушивают при (110 ± 5) °С до постоянной массы.

Стандартные растворы фосфора

Раствор А с массовой концентрацией фосфора 0,001 г/см³: 4,393 г однозамещенного фосфорнокислого калия растворяют в воде и доводят объем раствора до 1 дм³.

Раствор В с массовой концентрацией фосфора 0,00001 г/см³; готовят перед употреблением разбавлением 10 см³ раствора А до 1 дм³.

2.3. Проведение анализа

Навеску чугуна (табл. 1) помещают в стакан или плоскодонную колбу вместимостью 200—250 см³, приливают 30 см³ азотной кислоты (1:2) и нагревают до растворения.

Таблица 1

Массовая доля фосфора, %	Масса навески чугуна, г	Аликвотная часть раствора, см ²
От 0,02 до 0,05	0,5	10
Св. 0,05 » 0,10	0,3	10
» 0,10 » 0,25	0,2	5

Прибавляют по каплям раствор марганцовокислого калия до выпадения бурого осадка двуокиси марганца и кипятят 2—3 мин. К кипящему раствору прибавляют по каплям раствор сернистокислого натрия до полного просветления и кипятят до удаления окислов азота.

Если навеска чугуна не растворяется в азотной кислоте, ее растворяют в 20—30 см³ смеси соляной и азотной кислот (3:1). После полного растворения навески приливают 10 см³ серной кислоты (1:1) и выпаривают раствор до паров серной кислоты. Соли растворяют при нагревании в 50—60 см³ воды. Прибавляют по каплям раствор марганцовокислого калия до выпадения бурого осадка двуокиси марганца и кипятят 2—3 мин. К кипящему раствору прибавляют по каплям раствор сернистокислого натрия до полного просветления и кипятят до удаления окислов азота.

Если массовая доля кремния в анализируемом образце свыше 1,0 %, навеску чугуна помещают в стеклоуглеродный тигель 4 или стеклоуглеродную чашку 2 и растворяют при слабом нагревании в 20 см³ смеси соляной и азотной кислот (3:1) и 5 см³ фтористоводородной кислоты. После полного растворения навески приливают 10 см³ серной кислоты (1:1) и выпаривают раствор до паров серной кислоты.

Соли растворяют при нагревании в 50—60 см³ воды. К кипящему раствору прибавляют по каплям раствор марганцовокислого калия (1—2 см³) до выпадения бурого осадка двуокиси марганца, который растворяют, прибавляя по каплям раствор сернистокислого натрия до исчезновения окраски. Раствор после разрушения двуокиси марганца переносят в мерную колбу вместимостью 100 см³, охлаждают, доводят водой до метки, перемешивают и фильтруют через сухой фильтр «белая лента» в коническую колбу вместимостью 150—200 см³, отбрасывая первые порции раствора, предварительно ополоснув ими колбу.

В зависимости от массовой доли фосфора отбирают две аликвотные части раствора (табл. 1) в мерные колбы вместимостью 100 см³, приливают по 25 см³ воды, по 3 см³ сернистокислого натрия и кипятят в течение 2—3 мин. Растворы охлаждают, затем в одну из колб прибавляют по каплям при непрерывном перемешивании 10 см³ серномолибдатного реактива, во вторую — 10 см³ раствора серной кислоты с молярной концентрацией эквивалента 3 моль/дм³. Затем в обе колбы приливают 5 см³

Таблица 2

аскорбиновой кислоты и 1 см³ раствора сурьмяновиннокислого калия, доливают до метки водой и перемешивают.

Оптическую плотность раствора измеряют через 45 мин на фотоэлектроколориметре при длине волны (630±20) нм (красный светофильтр) или на спектрофотометре при длине волны 880 нм относительно раствора, не содержащего молибдата аммония.

2.4. Построение градуировочного графика

Для построения градуировочного графика в пять или шесть мерных колб вместимостью 100 см³ помещают 1; 1,5; 2; 2,5 и 3 см3 стандартного раствора Б однозамещенного фосфорнокислого калия, что соответствует 0,00001; 0,000015; 0,00002; 0,000025 и 0,00003 г фосфора в 100 см3 фотометрируемого объема. Приливают воду до 25 см³, затем приливают при непрерывном перемешивании 10 см³ серномодибдатного реактива, 5 см³ раствора аскорбиновой кислоты и 1 см³ раствора сурьмяновиннокислого калия, доливают до метки водой и далее поступают, как указано в п. 2.3.

Шестая мерная колба вместимостью 100 см³, в которую добавлены все реактивы, кроме стандартного раствора фосфора, служит для проведения контрольного опыта на содержание фосфора в реактивах, применяемых при построении градуировочного графика, и служит раствором сравнения.

- 2.5. Обработка результатов
- Массовую долю фосфора (X) в процентах вычисляют по формуле

$$X = \frac{m \cdot 100}{m_1},$$

где m — масса фосфора в аликвотной части, найденная по градуировочному графику, г;

т. — масса навески чугуна, соответствующая аликвотной части раствора, г.

2.5.2. Абсолютные расхождения результатов трех парадлельных определений при доверительной вероятности P = 0.95 не должны превышать допускаемых значений, приведенных в табл. 2.

Массовая доля	Абсолютное допускаемое
фосфора, %	расхождение, %
От 0,02 до 0,05	0,004

Ca. 0,05 * 0,10 0.006» 0.10 » 0.25 0.010

ФОТОМЕТРИЧЕСКИЙ МЕТОЛ С ПРИМЕНЕНИЕМ ВОССТАНОВИТЕЛЯ — ИОНОВ ДВУХВАЛЕНТНОГО ЖЕЛЕЗА

(при массовой доле фосфора от 0,25 до 2,0 %)

3.1. Сущность метода

Метод основан на образовании фосфорномолибденовой гетерополикислоты и восстановлении ее ионами двухвалентного железа в присутствии гидроксиламина до комплексного соединения, окрашенного в синий цвет ($\lambda = 600-900$ нм, оптимальная концентрация фосфора 10-100 мкг в 100 см³ фотометрируемого раствора).

Мышьяк удаляют отгонкой в виде бромида, если массовая доля его превышает 0,005 %.

3.2. Аппаратура и реактивы

Шкаф сушильный с температурой нагрева 105—110 °C.

Спектрофотометр или фотоэлектроколориметр.

Кислота азотная по ГОСТ 4461 и разбавленная 1:6.

Кислота серная по ГОСТ 4204 и раствор с молярной концентрацией эквивалента 8 моль/дм³.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1.

Калий марганцовокислый по ГОСТ 20490, раствор с массовой концентрацией 40 г/дм³.

Гидроксиламин сернокислый по ГОСТ 7298; раствор с массовой концентрацией 200 г/дм³.

Квасцы железоаммонийные, раствор с массовой концентрацией 432,5 г/дм3: 432,5 г квасцов растворяют в присутствии 20 см³ серной кислоты в 1 дм³ воды,

Аммоний молибденовокислый по ГОСТ 3765.

Серномолибдатный реактив: 55,2 г молибденовокислого аммония растворяют при нагревании в 250—300 см³ воды, отфильтровывают через плотный фильтр в мерную колбу вместимостью 1 дм³. охлаждают и медленно при непрерывном перемешивании приливают 230 см3 серной кислоты, раствор охлаждают, доводят водой до метки и перемешивают.

Аммиак водный по ГОСТ 3760, разбавленный 1:1.

C. 4 FOCT 2604.4-87

Аммоний бромистый по ГОСТ 19275, раствор с массовой концентрацией 100 г/дм³.

Калий фосфорнокислый однозамещенный по ГОСТ 4198, стандартные растворы А и Б.

Раствор A с массовой концентрацией фосфора 0.001 г/см^3 : 4.393 г однозамещенного фосфорнокислого калия, высущенного при температуре (105 ± 5) °C до постоянной массы, растворяют в воде и доводят объем раствора до 1 дм^3 .

Раствор Б с массовой концентрацией фосфора 0,00001 г/см³: готовят перед употреблением разбавлением 10 см³ раствора А до 1 дм³.

- 3.3. Проведение анализа:
- 3.3.1. Навеску чугуна массой 0,2 г помещают в стакан или плоскодонную колбу вместимостью 200—250 см³, приливают 30 см³ азотной кислоты (1:6) и нагревают до растворения навески.

Если навеска чугуна не растворяется в азотной кислоте, приливают 5 см³ азотной кислоты и 15 см³ соляной кислоты и нагревают до растворения. Раствор выпаривают до состояния влажных солей, затем приливают 20 см³ азотной кислоты и вновь выпаривают раствор до состояния влажных солей, после чего приливают 5—10 см³ азотной кислоты, 15—20 см³ воды и нагревают до растворения солей.

Если массовая доля мышьяка в анализируемом чугуне свыше 0,005 %, его удаляют отгонкой. Для этого раствор после растворения навески выпаривают досуха. К сухому остатку приливают 10 см³ соляной кислоты и снова выпаривают досуха. Эту операцию повторяют два раза. Сухой остаток растворяют при нагревании в 15 см³ соляной кислоты (1:1), приливают 10 см³ раствора бромистого аммония и выпаривают раствор досуха. После этого приливают 30 см³ азотной кислоты (1:6) и нагревают до растворения солей.

К кипящему раствору прибавляют по каплям раствор марганцовокислого калия до выпадения бурого осадка двуокиси марганца. К горячему раствору по каплям прибавляют раствор гидроксиламина до обесцвечивания. Кипятят раствор 1—2 мин для удаления окислов азота, охлаждают и переносят в мерную колбу вместимостью 100 см³, доводят водой до метки и перемешивают. Полученный раствор фильтруют через сухой фильтр «белая лента» в коническую колбу вместимостью 150—200 см³, отбрасывая первые порции фильтрата, предварительно ополоснув ими колбу.

Отбирают две аликвотные части раствора по 5 см³ в конические колбы вместимостью 100 см³, приливают по 20—25 см³ воды и по 2 см³ раствора железоаммонийных квасцов.

3.3.2. Растворы нейтрализуют аммиаком, прибавляя его по каплям до выпадения неисчезающей мути гидроокиси железа, затем прибавляют 5 см³ раствора гидроксиламина. Содержимое колб нагревают до исчезновения желтой окраски раствора.

Если растворы сохраняют желтую окраску, добавляют 1—2 капли раствора аммиака. При появлении мути ее растворяют добавлением 1—2 капель соляной кислоты (1:1). Растворы охлаждают и переносят в мерные колбы вместимостью 100 см³. В одну из колб прибавляют при непрерывном перемешивании 8 см³ раствора серномолибдатного реактива, во вторую — 8 см³ раствора серной кислоты с молярной концентрацией эквивалента 8 моль/дм³. Содержимое колб доливают до метки водой и перемешивают. Раствор во второй колбе служит в качестве раствора сравнения.

Величину оптической плотности раствора измеряют на спектрофотометре при длине волны 830 нм на фотоэлектроколориметре при длине волны (630±20) нм (красный светофильтр) в кювете оптимального размера.

По найденному значению оптической плотности, за вычетом оптической плотности раствора контрольного опыта, находят массу фосфора в граммах по градуировочному графику.

При проведении контрольного опыта на содержание фосфора в реактивах к аликвотной части прибавляют 2 см³ раствора железоаммонийных квасцов.

3.4. Построение градуировочного графика

Для построения градуировочного графика в восемь из девяти мерных колб вместимостью 100 см^3 помещают 2,5; 5; 7,5; 10; 12,5; 15; 17,5 и 20 см^3 стандартного раствора Б однозамещенного фосфорно-кислого калия, что соответствует 0,000025; 0,00005; 0,000075; 0,0001; 0,000125; 0,00015; 0,000175 и 0,0002 г фосфора в 100 см^3 фотометрируемого раствора.

Девятая мерная колба вместимостью 100 см³, в которую добавлены все реактивы, кроме стандартного раствора фосфора, служит для проведения контрольного опыта на содержание фосфора в реактивах, применяемых при построении градуировочного графика, и служит раствором сравнения.

В каждую колбу приливают по 20—25 см³ воды, по 2 см³ раствора железоаммонийных квасцов и далее анализ проводят, как указано в п. 3.3.2.

Таблица 3

- 3.5. Обработка результатов
- 3.5.1. Массовую долю фосфора (X) в процентах вычисляют по формуле

$$X = \frac{m \cdot 100}{m_1},$$

где m — масса фосфора в аликвотной части, найденная по градуировочному графику, г;

т. — масса навески чугуна, соответствующая аликвотной части раствора, г.

3.5.2. Абсолютные расхождения результатов трех параллельных определений при доверительной вероятности P = 0,95 не должны превышать допускаемых значений, указанных в табл. 3.

Массовая доля фосфора, %	Абсолютное допускаемое расхождение, %
От 0,25 до 0,50	0.015
Ca. 0,50 × 1,0	0.020

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

РАЗРАБОТЧИКИ

- В. Л. Пилюшенко, Ю. Т. Худик, Т. Я. Каленченко, В. П. Корж, М. А. Дружинин, Т. Н. Полторацкая
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19.02.87 № 281
- 3. B3AMEH FOCT 2604.4-77
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД; на которые дана ссылка	Номер пункта, подпункта, перечисления, приложения
ГОСТ 195—77	2.2
ΓΟCT 3118—77	2.2, 3.2
ΓΟCT 3760—79	3.2
ΓΟCT 3765—78	2.2, 3.2
ΓOCT 4198—75	2.2, 3.2
ΓΟCT 4204—77	2.2, 3.2
ΓOCT 4461—77	2.2, 3.2
ГОСТ 7298—79	3.2
ΓΟCT 10484—78	2.2
ГОСТ 18300—87	2.2
ΓΟCT 19275—73.	3.2
ΓΟCT 20490—75	2.2, 3.2
ΓΟCT 28473—90	1.1

- Ограничение срока действия снято по протоколу № 2—92 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 2—93)
- 6. ПЕРЕИЗДАНИЕ

10-1893