РЕАКТИВЫ

КАДМИЙ ХЛОРИСТЫЙ 2,5-ВОДНЫЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

УДК 546.48′131—41:006.354 Группа Л51

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Реактивы

КАДМИЙ ХЛОРИСТЫЙ 2,5-ВОДНЫЙ

Технические условия

ГОСТ 4330—76

Reagents.
Cadmium chloride, 2,5-aqueous.
Specifications

OKII 26 2321 0480 09

Дата введения 01.07.77

Настоящий стандарт распространяется на 2,5-водный хлористый кадмий, который представляет собой бесцветные полупрозрачные кристаллы или белый кристаллический порошок; легко растворим в воде, трудно — в метиловом и этиловом спиртах; на воздухе выветривается.

Формула CdCl, 2,5H,O.

Молекулярная масса (по международным атомным массам 1971 г.) — 228,34.

(Измененная редакция, Изм. № 1).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

 1.1а. 2,5-водный хлористый кадмий должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

(Введен дополнительно, Изм. № 1).

 По физико-химическим показателям 2,5-водный хлористый кадмий должен соответствовать нормам, указанным в табл. 1.

Таблица 1

	Норма			
Наименование показателя	Чистый для анализа (ч. д. а.) ОКЛ 26 2321 0482 07	Чистый (ч.) ОКП 26 2321 0481 08		
1. Массовая доля хлористого кадмия (CdCl $_2$) в высушенном препарате, %, не менее	99,7	99,7		
2. Массовая доля нерастворимых в воде веществ, %, не более	0,003	0,010		
3. Массовая доля общего азота (N), %, не более	0,002	0,005		
 Массовая доля сульфатов (SO₄), %, не более 	0,003	0,010		
5. Массовая доля железа (Fe), %, не более	0,0002	0,0010		
6. Массовая доля мышьяка (Аs), %, не более	0,0001	0,0002		
7. Массовая доля меди (Си), %, не более	0,0005	0,0020		
8. Массовая доля свинца (Рb), %, не более	0,001	0,005		
9. Массовая доля цинка (Zn), %, не более	0,002	010,0		

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1976 © ИПК Издательство стандартов, 2001

	Норма		
Найменование показателя	Чистый для анализа (ч. д. а.) ОКП 26 2321 0482 07	Чистый (ч.) ОКП 26 2321 0481 08	
 Массовая доля суммы натрия, калия, кальция и магния (Na+K+Ca+Mg), %, не более 	0,02	0,05	
11. рН раствора препарата с массовой долей 5 %, не ниже	4	4	

(Измененная редакция, Изм. № 1).

2. ПРАВИЛА ПРИЕМКИ

- Правила приемки по ГОСТ 3885.
- Массовые доли общего азота, меди, мышьяка, свинца, цинка и суммы натрия, калия, кальция и магния изготовитель определяет периодически в каждой 20-й партии.

(Введен дополнительно, Изм. № 1).

3. МЕТОДЫ АНАЛИЗА

З.1а. Общие указания по проведению анализа — по ГОСТ 27025.

При взвешивании применяют лабораторные весы общего назначения типов ВЛР-200 и ВПКТ-500г-М или ВЛЭ-200 г.

Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже указанных в иастоящем стандарте.

(Введен дополнительно, Изм. № 1).

- Пробы отбирают по ГОСТ 3885. Масса средней пробы не должна быть менее 300 г.
- Определение массовой доли хлористого кадмия в высушенном препарате — по ГОСТ 10398.

При этом для установления поправочного коэффициента раствора ди-Na-ЭДТА допускается использовать кадмий марки Kд-0 (ГОСТ 1467). Масса навески кадмия для приготовления 1 дм³ раствора кадмия концентрации 0,05 моль/дм³ — 5,6200 г.

Подготовку к анализу проводят следующим образом: около 0,4000 г предварительно высущенного до постоянной массы при 110—120 °C препарата помещают в коническую колбу вместимостью 250 см³, растворяют при перемешивании в 100 см³ воды и далее определение проводят по ГОСТ 10398.

3.2.1. Обработка результатов

Массовую долю хлористого кадмия (Х) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0,009166 \cdot 100}{m}$$
,

- где V объем раствора ди-Na-ЭДТА концентрации точно 0,05 моль/дм³, израсходованный на титрование, см³;
 - т масса навески высущенного препарата, т;
- 0,009166 масса хлористого кадмия, соответствующая 1 см³ раствора ди-Na-ЭДТА концентрации точно 0,05 моль/дм³, г.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,2 %.

Допускаемая абсолютная суммарная погрешность результата анализа ± 0.4 % при доверительной вероятности P=0.95.

3.1-3.2.1. (Измененная релакция, Изм. № 1).

3.3. Определение массовых долей не растворимых в воде веществ

3.3.1. Реактивы, растворы и посуда:

вода дистиллированная по ГОСТ 6709;

кислота соляная по ГОСТ 3118, раствор с массовой долей 0,5 %;

серебро азотнокислое по ГОСТ 1277, раствор с массовой долей около 1,5 %;

тигель фильтрующий ТФ ПОР 16 (10) по ГОСТ 25336;

пипетка 4(5)-2-1(2) по НТД;

стакан B(H)-1-400 TXC по ГОСТ 25336;

цилиндр 1(3)-250 или мензурка 250 по ГОСТ 1770.

3.3.2. Проведение анализа

50,00 г препарата помещают в стакан, растворяют в 150 см³ воды, подкисленной 0,5 см³ раствора соляной кислоты, и фильтруют через фильтрующий тигель, предварительно высушенный до постоянной массы и взвешенный (результат взвешивания в граммах записывают с точностью до четвертого десятичного знака). Остаток на фильтре промывают горячей водой (приблизительно 100 см³) до отрицательной реакции на ион хлора (проба с раствором азотнокислого серебра) и сушат в сушильном шкафу при 105—110 °C до постоянной массы.

Препарат считают соответствующим требованиям настоящего стандарта, если масса остатка после высушивания не будет превышать:

для препарата «чистый для анализа» — 1,5 мг,

для препарата «чистый» — 5,0 мг.

Допускаемая относительная суммарная погрешность результата анализа ± 35 % для препарата квалификации «чистый для анализа» и ± 20 % для препарата квалификации «чистый» при доверительной вероятности P=0.95.

(Измененная редакция, Изм. № 1).

3.4-3.4.2. (Исключены, Изм. № 1).

Определение массовой доли общего азота — по ГОСТ 10671.4.

При этом подготовку к анализу проводят следующим образом: к 1,00 г препарата прибавляют 43 см³ воды, перемешивают до полного растворения препарата и далее определение проводят фотометрическим или визуально-колориметрическим методом, прибавляя 7 см³ раствора гидроокиси натрия вместо 5 см³.

Препарат считают соответствующим требованиям настоящего стандарта, если масса общего азота не будет превышать:

для препарата «чистый для анализа» — 0,02 мг,

для препарата «чистый» — 0,05 мг.

При разногласиях в оценке массовой доли общего азота анализ проводят фотометрическим методом.

Определение массовой доли сульфатов — по ГОСТ 10671.5.

При этом подготовку к анализу проводят следующим образом:

0,50 г препарата помещают в коническую колбу, прибавляют 25 см³ воды и далее определение проводят фототурбидиметрическим или визуально-нефелометрическим методом (способ 1).

Препарат считают соответствующим требованиям настоящего стандарта, если масса сульфатов не будет превышать:

для препарата «чистый для анализа» — 0,015 мг,

для препарата «чистый» — 0,05 мг.

При разногласиях в оценке массовой доли сульфатов анализ проводят фототурбидиметрическим методом.

3.7. Определение массовой доли железа - по ГОСТ 10555.

При этом подготовку к анализу проводят следующим образом: 3,00 г препарата помещают в мерную колбу вместимостью 50 см³, растворяют в 20 см³ воды и далее определение проводят сульфосалициловым методом, прибавляя 12 см³ раствора аммиака вместо 5 см³.

Препарат считают соответствующим требованиям настоящего стандарта, если масса железа не будет превышать:

для препарата «чистый для анализа» — 0,006 мг,

для препарата «чистый» — 0,030 мг.

Допускается заканчивать определение визуально.

Допускается проводить определение железа роданидным методом по ГОСТ 10555.

C. 4 FOCT 4330—76

При разногласиях в оценке массовой доли железа анализ проводят сульфосалициловым методом фотометрически.

Определение массовой доли мышьяка — по ГОСТ 10485.

При этом подготовку к анализу проводят следующим образом: 0,50 г препарата помещают в колбу прибора для определения мышьяка, растворяют в 30 см³ воды и далее определение проводят методом с применением бромнортутной бумаги в солянокислой среде, прибавляя 8 г цинка вместо 5 г.

Препарат считают соответствующим требованиям настоящего стандарта, если окраска бромнортутной бумаги от анализируемого раствора не будет интенсивнее окраски бромнортутной бумаги от раствора, приготовленного одновременно с анализируемым и содержащего:

для препарата «чистый для анализа» — 0,0005 мг As,

для препарата «чистый» — 0,0010 мг As,

30 см³ раствора двухлористого олова, 5 см³ раствора йодистого калия и 8 г цинка.

3.5—3.8. (Измененная редакция, Изм. № 1).

3.9. Определение массовой доли магния, меди и свинца

3.9.1. Аппаратура, реактивы и растворы:

спектрограф типа ИСП-30 с трехлинзовой системой освещения щели и трехступенчатым ослабителем:

выпрямитель типа ВАЗ 270 × 30;

генератор дуги переменного тока типа ДГ-2 или ДГ-1;

микрофотометр типа МФ-2 или МФ-4;

спектропроектор типа ПС-18;

лампа инфракрасная мощностью 500 Вт;

пипетки 4(5)-2-1(2) и 8-2-0,1(0,2) по НТД;

стаканчик по ГОСТ 25336;

угли графитированные для спектрального анализа, ос. ч. (электроды угольные) диаметром 6 мм; нижний электрод с цилиндрическим каналом диаметром 4,0 мм и глубиной 7 мм; верхний электрод заточен на конус;

фотопластинки спектральные типа II чувствительностью 15 отн. ед.;

аммоний хлористый по ГОСТ 3773;

вода дистиллированная по ГОСТ 6709, вторично перегнанная в кварцевом дистилляторе, или вода деминерализованная;

вода питьевая по ГОСТ 2874*, применяется для приготовления фоторастворов;

растворы, содержащие Mg, Cu, Pb; готовят по ГОСТ 4212; соответствующим разбавлением готовят раствор 1, содержащий 0,01 мг/см³ Mg, 0,0025 мг/см³ Cu, 0,005 мг/см³ Pb, и раствор 2, содержащий 0,05 мг/см³ Mg, 0,01 мг/см³ Cu и 0,025 мг/см³ Pb;

кадмий хлористый 2,5-водный, не содержащий Mg, Cu, Pb; готовят многократной перекристаллизацией препарата по настоящему стандарту. При наличии примесей их определяют методом добавок в условиях данной методики и учитывают при построении градуировочного графика;

гидрохинон (парадиоксибензол) по ГОСТ 19627;

калий бромистый по ГОСТ 4160;

метол (4-метиламинофенол сульфат) по ГОСТ 25664;

натрий сульфит 7-водный;

натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068;

натрий углекислый по ГОСТ 83 или

натрий углекислый 10-водный по ГОСТ 84;

проявитель метолгидрохиноновый; готовят следующим образом: раствор A-2 г метола, 10 г гидрохинона и 104 г 7-водного сульфита натрия растворяют в воде, доводят объем раствора водой до 1 дм³, перемешивают и, если раствор мутный, его фильтруют; раствор B-16 г углекислого натрия (или 40 г 10-водного углекислого натрия) и 2 г бромистого калия растворяют в воде, доводят объем раствора водой до 1 дм³, перемешивают и, если раствор мутный, его фильтруют; затем растворы A и B смешивают в равных объемах;

фиксаж быстродействующий; готовят следующим образом: 500 г 5-водного серноватистокислого натрия и 100 г хлористого аммония растворяют в воде, доводят объем раствора водой до 2 дм³, перемешивают и, если раствор мутный, его фильтруют.

(Измененная редакция, Изм. № 1).

На территории Российской Федерации действует ГОСТ Р 51232—98.

3.9.2. Подготовка к анализу

3.9.2.1. Подготовка анализируемой пробы

0,500 г препарата помещают в стаканчик для взвешивания вместимостью 20 см³, приливают пипеткой 2 см³ воды и перемешивают. Затем в кратер графитового электрода, нагретого под инфракрасной лампой, вносят пипеткой 8—2—0,1 по 7 капель полученного раствора и высушивают под инфракрасной лампой.

3.9.2.2. Приготовление образцов для построения градуировочного графика

Для приготовления каждого образца для построения градуировочного графика 0,500 г 2,5-водного хлористого кадмия, не содержащего определяемых примесей или с известным их содержанием, помещают в стаканчик для взвешивания вместимостью 20 см³ и прибавляют объемы растворов 1 и 2, указанные в табл. 2.

Таблина 2

Номера образцов	Объем раствора, см ³		Масса примесей в образце, мг			Массовая доля примесей в пересчете на препарат, %		
	1	2	Mg	Çu	Pb	Mg	Сμ	Pb
1 2 3 4	1 2 —	_ _ 1 2	0,01 0,02 0,05 0,1	0,0025 0,005 0,01 0,02	0,005 0,01 0,025 0,05	0,002 0,004 0,01 0,02	0,0005 0,001 0,002 0,004	0,001 0,002 0,005 0,01

В стаканчики для взвешивания, содержащие 1 и 3 образцы, пипеткой прибавляют по 1 см³ воды и перемешивают. Затем в кратер графитовых электродов, нагретых под инфракрасной лампой, вносят пипеткой 8—2—0,1 по 7 капель каждого образца и высушивают под инфракрасной дампой.

Для определения массовых долей указанных выше примесей в препарате ч.д.а. применяют образцы 1, 2, 3, в препарате ч. — 2, 3, 4.

3.9.2.1, 3.9.2.2. (Измененная редакция, Изм. № 1).

3.9.2.3. Условия съемки спектрограммы

Сила тока, А	12 0,018
Высота диафрагмы на средней линзе	
конденсорной системы, мм	3,2
Экспозиция, с	.30.

Перед съемкой угольные электроды предварительно обжигают в дуге постоянного тока в течение 15 с при силе тока 10 A и снимают спектрограмму для контроля на отсутствие в электродах Mg, Cu, Pb.

3.9.3. Проведение анализа

Электрод с анализируемой пробой, подсушенный под инфракрасной лампой, возбуждают в дуге постоянного тока и снимают спектрограмму. Так же поступают с образцами, содержащими примесь Mg, Cu, Pb.

Спектры анализируемой пробы и образцов снимают на одной фотопластинке не менее трех раз. Каждый раз ставят новую пару электродов. Щель открывают до зажигания дуги.

3.9.4. Обработка спектрограммы и результатов

Фотопластинку со снятыми спектрами проявляют, промывают водой, фиксируют, снова промывают в проточной воде и высушивают на воздухе. Затем проводят фотометрирование аналитических спектральных линий определяемых элементов и линий соседнего фона, пользуясь логарифмической шкалой (нм):

Мg — 277,98 или 277,83;

Cu - 327,40;

Pb - 283,31.

Для каждой аналитической линии вычисляют разность почернений (AS)

$$\Delta \dot{S} = S_{n+\Phi} - S_{\Phi}$$

где $S_{s+\Phi}$ — почернение линии+фона;

 S_{Φ} — почернение фона.

По трем значениям разности почернений определяют среднее арифметическое значение ($\Delta S'$) для каждого элемента в анализируемой пробе и образце. По значениям $\Delta S'$ аналитических пар линий примесей образца строят градуировочный график для каждого определяемого элемента, откладывая на оси абсцисс логарифмы концентраций, а на оси ординат — среднее арифметическое значение разности почернений.

Массовую долю каждой примеси в анализируемой пробе находят по соответствующему градуировочному графику.

За результат анализа принимают среднее арифметическое результатов трех параллельных определений, относительное расхождение между наиболее отличающимися значениями которых не превышает допускаемое расхождение, равное 40 %.

Допускаемая относительная суммарная погрешность результата анализа ± 20 % при доверительной вероятности P = 0.95.

Допускается проводить определение меди по ГОСТ 10554 диэтилдитиокарбаматным методом из навески 0,5 г.

При разногласиях в оценке массовой доли меди анализ проводят спектральным методом.

(Измененная редакция, Изм. № 1).

3.10. Определение массовой доли цинка

Определение проводят по ГОСТ 22001.

(Измененная редакция, Изм. № 1).

- 3.11. Определение массовой доли натрия, калия и кальция
- Приборы, оборудование, реактивы и растворы:

спектрофотометр пламенный на основе спектрографа ИСП-51 с фотоэлектрической приставкой ФЭП-1 или на основе монохроматора УМ-2 с фотоэлектрической приставкой с соответствующим фотоумножителем или спектрофотометр «Сатурн»; допускается использование других приборов с аналогичными метрологическими характеристиками;

ацетилен растворенный и газообразный технический по ГОСТ 5457;

воздух сжатый для питания контрольно-измерительных приборов;

горелка;

распылитель;

колба 2-100-2 по ГОСТ 1770;

пипетки 4(5)-2-1(2), 6(7)-2-5 по HTД;

вода дистиллированная по ГОСТ 6709, вторично перегнанная в кварцевом дистилляторе, или вода деминерализованная;

растворы, содержащие Na, K и Ca, готовят по ГОСТ 4212; раствор, содержащий по 1 мг/см³ Na, K и Ca, — раствор 1; соответствующим разбавлением получают раствор, содержащий по 0,1 мг/см³ Na, K и Ca, — раствор 2;

кадмий хлористый, 2,5-водный по настоящему стандарту, не содержащий Na, K и Ca; готовят многократной перекристаллизацией препарата. При отсутствии препарата, не содержащего указанных примесей, для приготовления растворов сравнения используют препарат с минимальным их содержанием, определяемым методом добавок в условиях данной методики.

Все исходные растворы и растворы сравнения, а также воду, применяемую для их приготовления, хранят в полиэтиленовой или кварцевой посуде.

(Измененная редакция, Изм. № 1).

- 3.11.2. Подготовка к анализу
- 3.11.2.1. Приготовление анализируемого раствора
- 5,00 г препарата помещают в мерную колбу, растворяют в воде, доводят объем раствора водой до метки и тщательно перемешивают.
 - 3.11.2.2. Приготовление растворов сравнения

Для приготовления каждого раствора сравнения 5,00 г препарата помещают в мерную колбу, растворяют в воде и прибавляют объемы растворов 1 или 2, указанные в табл. 3. Затем объем раствора доволят водой до метки и тшательно перемешивают.

Таблица 3

Номера растворов	Объемы ра	створа, см3	Масса в растворе сравнения, мг		Массовая доля примесей п пересчете на препарат, %			
,	ı	2	Na	K	Ca	Na	Ř	Ca
1 2 3 4	- 0,5 1	1 2,5 — —	0,1 0,25 0,5 1,0	0,1 0,25 0,5 1,0	0,1 0,25 0,5 1,0	0,002 0,005 0,01 0,02	0,002 0,005 0,01 0,02	0,002 0,005 0,01 0,02

3.11.3. Проведение анализа

Для анализа берут не менее двух навесок препарата. Сравнивают интенсивность излучений резонансных линий (нм): Na — 589,0—589,6; K — 766,6; Ca — 422,7, возбуждаемых в пламени ацетилен—воздух при введении в него растворов сравнения и анализируемых растворов.

После подготовки прибора в соответствии с прилагаемой к нему инструкцией по эксплуатации проводят фотометрирование воды, применяемой для приготовления растворов, а также анализируемых растворов и растворов сравнения, в порядке возрастания массовых долей примесей. Затем проводят фотометрирование в обратной последовательности, начиная с максимальных массовых долей примесей, и вычисляют среднее арифметическое значение показаний для каждого раствора, учитывая в качестве поправки отсчет, полученный при фотометрировании воды. После каждого измерения распыляют воду.

3.11.4. Обработка результатов

По полученным данным для растворов сравнения строят градуировочный график для каждого определяемого элемента, откладывая на оси ординат значения интенсивности излучения, на оси абсцисс — массовую долю определяемых элементов в пересчете на препарат в процентах.

Массовую долю каждой примеси находят по графику.

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, равное 25 %.

Допускаемая относительная суммарная погрешность результата анализа ± 10 % при доверительной вероятности P=0.95.

- 3.12. Определение рН раствора препарата с массовой долей 5 %
- 5,00 г препарата помещают в колбу Kн-1(2)—250—34 ТХС (ГОСТ 25336), добавляют цилиндром (ГОСТ 1770) 95 см³ дистиллированной воды, не содержащей углекислоты (готовят по ГОСТ 4517), перемещивают и измеряют pH раствора на универсальном иономере ЭВ-74 или другом приборе с пределом допускаемой основной погрешности ±0.05 pH.
 - 3.11.2.1—3.12. (Измененная редакция, Изм. № 1).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Препарат упаковывают и маркируют в соответствии с ГОСТ 3885.

Вид и тип тары: 2—1, 2—9, 2—4 (с дополнительной герметизацией парафинированием). Группа фасовки: III, IV, V, VI и VII.

На транспортную тару наносят знаки опасности по ГОСТ 19433 (класс 6, подкласс 6.1, классификационный шифр 6162, черт. 6.1).

(Измененная редакция, Изм. № 1).

- Препарат перевозят любым видом транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.
 - 4.3. Препарат хранят в упаковке изготовителя в крытых складских помещениях.

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- Изготовитель гарантирует соответствие 2,5-водного хлористого кадмия требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
 - 5.2. Гарантийный срок хранения препарата три года со дня изготовления.
 - 5.1, 5.2. (Измененная редакция, Изм. № 1).

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1. 2,5-водный хлористый кадмий — политропный яд. Предельно допустимая концентрация в воздухе рабочей зоны — 0,05/0,01 мг/см³ (числитель — максимальная, знаменатель — среднесменная), класс опасности 1, в воде культурно-бытового водопользования предельно допустимая концентрация — 0,001 мг/дм³ (по кадмию), класс опасности 2, лимитирующий показатель вредности — санитарно-токсикологический.

(Измененная редакция, Изм. № 1).

- 6.2. (Исключен, Изм. № 1).
- 6.3. При работе с препаратом следует применять индивидуальные средства защиты (респираторы, резиновые перчатки, спецодежду, фартук), а также соблюдать меры личной гигиены. Не допускать попадания препарата внутрь организма.
- 6.4. Помещения, в которых проводятся работы с препаратом, должны быть оборудованы общей приточно-вытяжной вентиляцией. Анализ препарата в лабораториях следует проводить в вытяжном шкафу. В местах наибольшего пыления необходимы местные вытяжки.

(Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 15.07.76 № 1724
- 3. B3AMEH FOCT 4330-66
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссыдка-	Номер пункта, подпункта
ГОСТ 83—79	3.9.1
ΓΟCT 84—76°	3.9.1
ΓΟCT 1277—75	3.3.1
ΓΟCT 1467—93	3.2
FOCT 177074	3.3.1, 3.11.1, 3.12
FOCT 2874—82	3.9.1
FOCT 3118-77	3.3.1
FOCT 3773—72	3.9.1
ΓΟCT 3885—73	2.1, 3.1, 4.1
ΓΟCT 4160-74	3.9.1
ΓΟCT 4212—76	3.9.1, 3.11.1
ΓΟCT 4517—87	3.12
ΓOCT 5457—75	3.11.1
ГОСТ 6709—72	3,3:1, 3.9.1, 3.11.1
ΓΟCT 10398—76	3.2
ΓΟCT 10485—75	3.8
ΓΟCT 10554—74	3.9.4
ΓOCT 10555—75	3.7
ΓΟCT 10671.4—74	3.5
ΓΟCT 10671.5—74	3.6
ΓΟCT 19433—88	4.1
ΓΟCT 19627—74	3.9.1
FOCT 22001—87	3.10
ΓΟCT 25336—82	3.3.1, 3.9.1, 3.12
ΓOCT 25664—83	3.9.1
ΓOCT 27025—86	3.1a
FOCT 27068—86	3.9.1

- Ограничение срока действия снято по протокоду № 4—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4—94)
- 6. ИЗДАНИЕ (октябрь 2001 г.) с Изменением № 1, утвержденным в сентябре 1989 г. (ИУС 12-89)

Редактор М.И. Максимова . Технический редактор О.И. Власова Корректор В.И. Варенцова Компьютерная верстка О.В. Арсеевой

Изд. лип. № 02354 от 14.07.2000; Сдано в набор 11.10.2001; Подписано в печать 01.11.2001; Усл. печ. л. 1,40. Уч.-изд.л. 1,05. Тираж, 160. экз. С 2445. Зак. 1035.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14.
http://www.standards.ru e-mail: info®standards.ru
Набрано й Издательстве на ПЭВМ
Филиал ИПК Издательство стандартов — тип. «Московский печатник», 103062, Москва, Лялин пер., 6:
Плр № 080102

